599 research outputs found

    Extending the depth of field with chromatic aberration for dual-wavelength iris imaging

    Get PDF
    We propose a method of extending the depth of field to twice that achievable by conventional lenses for the purpose of a low cost iris recognition front-facing camera in mobile phones. By introducing intrinsic primary chromatic aberration in the lens, the depth of field is doubled by means of dual wavelength illumination. The lens parameters (radius of curvature, optical power) can be found analytically by using paraxial raytracing. The effective range of distances covered increases with dispersion of the glass chosen and with larger distance for the near object point

    Speckle Statistics in Adaptively Corrected Images

    Full text link
    (abridged) Imaging observations are generally affected by a fluctuating background of speckles, a particular problem when detecting faint stellar companions at small angular separations. Knowing the distribution of the speckle intensities at a given location in the image plane is important for understanding the noise limits of companion detection. The speckle noise limit in a long-exposure image is characterized by the intensity variance and the speckle lifetime. In this paper we address the former quantity through the distribution function of speckle intensity. Previous theoretical work has predicted a form for this distribution function at a single location in the image plane. We developed a fast readout mode to take short exposures of stellar images corrected by adaptive optics at the ground-based UCO/Lick Observatory, with integration times of 5 ms and a time between successive frames of 14.5 ms (λ=2.2\lambda=2.2 μ\mum). These observations temporally oversample and spatially Nyquist sample the observed speckle patterns. We show, for various locations in the image plane, the observed distribution of speckle intensities is consistent with the predicted form. Additionally, we demonstrate a method by which IcI_c and IsI_s can be mapped over the image plane. As the quantity IcI_c is proportional to the PSF of the telescope free of random atmospheric aberrations, this method can be used for PSF calibration and reconstruction.Comment: 7 pages, 4 figures, ApJ accepte

    Electrically pumped semiconductor laser with low spatial coherence and directional emission

    Full text link
    We design and fabricate an on-chip laser source that produces a directional beam with low spatial coherence. The lasing modes are based on the axial orbit in a stable cavity and have good directionality. To reduce the spatial coherence of emission, the number of transverse lasing modes is maximized by fine-tuning the cavity geometry. Decoherence is reached in a few nanoseconds. Such rapid decoherence will facilitate applications in ultrafast speckle-free full-field imaging

    Disorder-Induced Shift of Condensation Temperature for Dilute Trapped Bose Gases

    Full text link
    We determine the leading shift of the Bose-Einstein condensation temperature for an ultracold dilute atomic gas in a harmonic trap due to weak disorder by treating both a Gaussian and a Lorentzian spatial correlation for the quenched disorder potential. Increasing the correlation length from values much smaller than the geometric mean of the trap scale and the mean particle distance to much larger values leads first to an increase of the positive shift to a maximum at this critical length scale and then to a decrease.Comment: Author information under http://www.theo-phys.uni-essen.de/tp/ags/pelster_di

    Extending the depth of field in a fixed focus lens using axial colour

    Get PDF
    We propose a method of extending the depth of field (EDOF) of conventional lenses for a low cost iris recognition front-facing smartphone camera. Longitudinal chromatic aberration (LCA) can be induced in the lens by means of dual wavelength illumination. The EDOF region is then constructed from the sum of the adjacent depths of field from each wavelength illumination. The lens parameters can be found analytically with paraxial raytracing. The extended depth of field is dependant on the glass chosen and position of the near object point

    Detector for imaging of explosions: present status and future prospects with higher energy X-rays

    Full text link
    The detector for imaging of explosions (DIMEX) is in operation at the synchrotron radiation (SR) beam-line at VEPP-3 electron ring at Budker INP since 2002. DIMEX is based on one-coordinate gas ionization chamber filled with Xe-CO2(3:1) mixture at 7atm, and active Frisch-grid made of Gas Electron Multiplier (GEM). The detector has spatial resolution of ~0.2mm and dynamic range of ~100 that allows to realize the precision of signal measurement at a percent level. The frame rate can be tuned up to 8 MHz (125 ns per image) and up to 32 images can be stored in one shot. At present DIMEX is used with the X-ray beam from 2T wiggler that has ~20 keV average energy. Future possibility to install similar detector at the SR beam-line at VEPP-4 electron ring is discussed.Comment: 14 pages, 15 figures. Submitted to JINS
    • …
    corecore