8 research outputs found

    Finite Element Analysis of Impact Energy on Spur Gear

    No full text
    In high-speed gear drive and power transmission, system impact failure mode always occurs due to the sudden impact and shock loading during the system in running. Therefore, study on the amount of impact energy that can be absorbed by a gear is vital. Impact test equipment has been designed and modelled for the purpose to study the impact energy on gear tooth. This paper mainly focused on Finite Element Analysis (FEA) of impact energy that occurred during simulation involving the impact test equipment modelling. The simulation was conducted using Abaqus software on critical parts of the test equipment to simulate the impact event and generate impact data for analysis. The load cell in the model was assumed to be free fall at a certain height which gives impact load to the test gear. Three different type of material for the test gear were set up in this simulation. Results from the simulation show that each material possesses different impact energy characteristic. Impact energy values increased along with the height of load drop. AISI 1040 were found to be the toughest material at 3.0m drop that could withstand up to 44.87N.m of impact energy. These data will be used to validate data in physical experiments in further study

    Finite Element Analysis of Impact Energy on Spur Gear

    No full text
    In high-speed gear drive and power transmission, system impact failure mode always occurs due to the sudden impact and shock loading during the system in running. Therefore, study on the amount of impact energy that can be absorbed by a gear is vital. Impact test equipment has been designed and modelled for the purpose to study the impact energy on gear tooth. This paper mainly focused on Finite Element Analysis (FEA) of impact energy that occurred during simulation involving the impact test equipment modelling. The simulation was conducted using Abaqus software on critical parts of the test equipment to simulate the impact event and generate impact data for analysis. The load cell in the model was assumed to be free fall at a certain height which gives impact load to the test gear. Three different type of material for the test gear were set up in this simulation. Results from the simulation show that each material possesses different impact energy characteristic. Impact energy values increased along with the height of load drop. AISI 1040 were found to be the toughest material at 3.0m drop that could withstand up to 44.87N.m of impact energy. These data will be used to validate data in physical experiments in further study

    A new dewatering technique for stingless bees honey

    No full text
    One of the problems faced in stingless bee honey storage is spoilage by the fermentation process occurs in honey due to its high water content. There are a few techniques available currently, but they are time consuming and there is excessive heat involved in the process. The temperature of the process must be kept low because excessive heat can deteriorate nutrition value and biochemical content in honey. Hence, a new method of honey dewatering was developed using a Low Temperature Vacuum Drying (LTVD) with induced nucleation technique.The objective of this research is to investigate the performance of a LTVD with induced nucleation to reduce the water content in honey. First, the honey was placed in a pressure vessel, and then air was removed. Then, the honey was slightly heated at 30°C and the water content before and after the experiment was measured by a refractometer. The steps were repeated until the water content reached below 20%. It was found that the LTVD method improved the water removal rate significantly with an average of 0.15% of water content per minute. That is 3 times much faster than the conventional method of low temperature heating by Tabouret. Higher temperature during dewatering process improved the dewatering rate significantly. It can be concluded that LTVD is a promising option in tackling the high water content in stingless bee honey issue

    A new dewatering technique for stingless bees honey

    No full text
    One of the problems faced in stingless bee honey storage is spoilage by the fermentation process occurs in honey due to its high water content. There are a few techniques available currently, but they are time consuming and there is excessive heat involved in the process. The temperature of the process must be kept low because excessive heat can deteriorate nutrition value and biochemical content in honey. Hence, a new method of honey dewatering was developed using a Low Temperature Vacuum Drying (LTVD) with induced nucleation technique.The objective of this research is to investigate the performance of a LTVD with induced nucleation to reduce the water content in honey. First, the honey was placed in a pressure vessel, and then air was removed. Then, the honey was slightly heated at 30°C and the water content before and after the experiment was measured by a refractometer. The steps were repeated until the water content reached below 20%. It was found that the LTVD method improved the water removal rate significantly with an average of 0.15% of water content per minute. That is 3 times much faster than the conventional method of low temperature heating by Tabouret. Higher temperature during dewatering process improved the dewatering rate significantly. It can be concluded that LTVD is a promising option in tackling the high water content in stingless bee honey issue
    corecore