1 research outputs found
Comprehensive Single-Shot Proteomics with FAIMS on a Hybrid Orbitrap Mass Spectrometer
Liquid
chromatography (LC) prefractionation is often implemented
to increase proteomic coverage; however, while effective, this approach
is laborious, requires considerable sample amount, and can be cumbersome.
We describe how interfacing a recently described high-field asymmetric
waveform ion mobility spectrometry (FAIMS) device between a nanoelectrospray
ionization (nanoESI) emitter and an Orbitrap hybrid mass spectrometer
(MS) enables the collection of single-shot proteomic data with comparable
depth to that of conventional two-dimensional LC approaches. This
next generation FAIMS device incorporates improved ion sampling at
the ESI–FAIMS interface, increased electric field strength,
and a helium-free ion transport gas. With fast internal compensation
voltage (CV) stepping (25 ms/transition), multiple unique gas-phase
fractions may be analyzed simultaneously over the course of an MS
analysis. We have comprehensively demonstrated how this device performs
for bottom-up proteomics experiments as well as characterized the
effects of peptide charge state, mass loading, analysis time, and
additional variables. We also offer recommendations for the number
of CVs and which CVs to use for different lengths of experiments.
Internal CV stepping experiments increase protein identifications
from a single-shot experiment to >8000, from over 100 000
peptide
identifications in as little as 5 h. In single-shot 4 h label-free
quantitation (LFQ) experiments of a human cell line, we quantified
7818 proteins with FAIMS using intra-analysis CV switching compared
to 6809 without FAIMS. Single-shot FAIMS results also compare favorably
with LC fractionation experiments. A 6 h single-shot FAIMS experiment
generates 8007 protein identifications, while four fractions analyzed
for 1.5 h each produce 7776 protein identifications