40 research outputs found

    Fabrication of (111)-oriented Ca0.5Sr0.5IrO3/SrTiO3 superlattices; a designed playground for honeycomb physics

    Full text link
    We report the fabrication of (111)-oriented superlattice structures with alternating 2m-layers (m = 1, 2, and 3) of Ca0.5Sr0.5IrO3 perovskite and two layers of SrTiO3 perovskite on SrTiO3(111) substrates. In the case of m = 1 bilayer films, the Ir sub-lattice is a buckled honeycomb, where a topological state may be anticipated. The successful growth of superlattice structures on an atomic level along the [111] direction was clearly demonstrated by superlattice reflections in x-ray diffraction patterns and by atomically-resolved transmission electron microscope images. The ground states of the superlattice films were found to be magnetic insulators, which may suggest the importance of electron correlations in Ir perovskites in addition to the much discussed topological effects.Comment: 14 pages, 4 figure

    The emergence of superconductivity in BaNi2(Ge1-xPx)2 at a structural instability

    Full text link
    The physical properties and structural evolution of the 122-type solid solution BaNi2(Ge1-xPx)2 are reported. The in-plane X-X (X = Ge1-xPx) dimer formation present in the end member BaNi2Ge2, which results in a structural transition to orthorhombic symmetry, is completely suppressed to zero temperature on P substitution near x = 0.7, and a dome-shape superconducting phase with a maximum Tc = 2.9 K emerges. Clear indications of phonon softening and enhanced electron-phonon coupling are observed at the composition of the structural instability. Our findings show that dimer breaking offers new possibilities as a tuning parameter of superconductivity.Comment: 14 pages, 4 figure
    corecore