10 research outputs found

    Modulation of blood redox status by the progression of induced apical periodontitis in rats

    Get PDF
    This study aimed to investigate if apical periodontitis in different periods changes systemic levels of the antioxidant and pro-oxidant parameters in Wistar rats. Twenty-four rats were randomly allocated into healthy animals, apical periodontitis at 14 days (AP14) and apical periodontitis at 28 days (AP28). The first mandibular molars were accessed in the AP groups, and the pulp chamber was exposed to the oral environment, inducing the apical lesion. After 14 and 28 days, the animals were anesthetized, euthanized, and hemimandibles were collected for micro-computed tomography (micro-CT) analysis to measure lesion volume, bone volume (BV), percent of bone to total tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular space (Tb.Sp). A histological examination of the remaining bone was also performed. Finally, blood samples were collected for oxidative biochemistry analysis, investigating glutathione (GSH), Trolox equivalent antioxidant capacity (TEAC), and lipid peroxidation (TBARS). The lesion volume was greater at 28 than at 14 days, as shown by micro-CT. AP14 and AP28 had decreased BV and Tb.Th, but only AP28 showed a reduction in BV/TV. Tb.N and Tb. Sp were increased in apical periodontitis at 28 days. In the histopathological analysis, AP14 had focal regions of moderate mononuclear inflammatory infiltrate, and AP28 had an intense inflammatory infiltrate with bacterial colonies. In the biochemical evaluation, GSH, TEAC, and TBARS were increased after 14 days. However, GSH returned to control levels, TEAC was similar to AP14, and TBARS increased significantly after 28 days. Therefore, the oxidative biochemistry response was modulated according to the progression of periapical damage. After 14 days, the organism could still react to the injury. However, at 28 days, the antioxidant response decreased, associated with an increase in TBAR

    Neurotoxicology of alcohol: a bibliometric and science mapping analysis

    Get PDF
    Alcohol consumption is common in many societies and has increased considerably, resulting in many socioeconomic and public health problems. In this sense, studies have been carried out in order to understand the mechanisms involved in alcohol consumption and related harmful effects. This study aimed to identify and map the knowledge and to perform bibliometric analysis of the neurotoxicology of alcohol based on the 100 most cited articles. A search was carried out in the Web of Science Core Collection database and information was extracted regarding the journal, authors, keywords, year of publication, number of citations, country and continent of the corresponding author. For each selected manuscript, the study design, alcohol exposure model, dose, period of exposure, and effect on the central nervous system and research hotspots were mapped. The journal with the highest number of publications was Alcoholism: Clinical and Experimental Research (n = 11 papers), the author who contributed the most was Crews FT (n = 8 papers), the studies had a total of 288 keywords and 75% of the publications were from the United States of America. The experimental studies evaluated the effects of prenatal and postnatal exposure and were conducted in rats and mice using doses ranging from 2.5 to 14 g/kg/day, with administration by subcutaneous, intraperitoneal, intragastric, or inhalation route or with free access through drinking bottles. Among the studies mapped, the oldest one (1989) aimed to understand the systemic damage and mechanisms of action involved, while the most recent focused on understanding the receptors and mechanisms involved in addiction, as well as genetic factors. Our results show the panorama of the most widespread scientific production in the scientific community on the neurotoxicology of ethanol, a high prevalence was observed in studies that addressed fetal alcohol syndrome and/or the effects of ethanol on neurodevelopment

    Modulation of blood redox status by the progression of induced apical periodontitis in rats

    Get PDF
    This study aimed to investigate if apical periodontitis in different periods changes systemic levels of the antioxidant and pro-oxidant parameters in Wistar rats. Twenty-four rats were randomly allocated into healthy animals, apical periodontitis at 14 days (AP14) and apical periodontitis at 28 days (AP28). The first mandibular molars were accessed in the AP groups, and the pulp chamber was exposed to the oral environment, inducing the apical lesion. After 14 and 28 days, the animals were anesthetized, euthanized, and hemimandibles were collected for micro-computed tomography (micro-CT) analysis to measure lesion volume, bone volume (BV), percent of bone to total tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular space (Tb.Sp). A histological examination of the remaining bone was also performed. Finally, blood samples were collected for oxidative biochemistry analysis, investigating glutathione (GSH), Trolox equivalent antioxidant capacity (TEAC), and lipid peroxidation (TBARS). The lesion volume was greater at 28 than at 14 days, as shown by micro-CT. AP14 and AP28 had decreased BV and Tb.Th, but only AP28 showed a reduction in BV/TV. Tb.N and Tb. Sp were increased in apical periodontitis at 28 days. In the histopathological analysis, AP14 had focal regions of moderate mononuclear inflammatory infiltrate, and AP28 had an intense inflammatory infiltrate with bacterial colonies. In the biochemical evaluation, GSH, TEAC, and TBARS were increased after 14 days. However, GSH returned to control levels, TEAC was similar to AP14, and TBARS increased significantly after 28 days. Therefore, the oxidative biochemistry response was modulated according to the progression of periapical damage. After 14 days, the organism could still react to the injury. However, at 28 days, the antioxidant response decreased, associated with an increase in TBARS

    Effects of Photobiomodulation on Oral Mucositis: Visualization and Analysis of Knowledge

    No full text
    This review article mapped and analyzed the most cited articles on the association of photobiomodulation (PBM) with oral mucositis (OM) and the evolution of clinical protocols in the area. A comprehensive search was performed on the Web of Science Core Collection (WoS-CC) database, leading to the extraction of information such as title, authors, abstract, journal name, number, average of citations, study design, year of publication, institutions, continents, countries, type of laser used, irradiated anatomical points, primary anti-cancer therapy, and laser parameters. Among those, clinical trials and literature reviews were the most common study designs. The main type of laser used was the InGaAlP diode, with a wavelength ranging from 630–660 nm, power going in 40–100 mW, and energy density ranging from 0.375–22 J/cm2. As for the anatomical sites irradiated by PBM, the cheek mucosa, upper and lower lips, lateral tongue, and bottom of the mouth stood out. This analysis highlights an increasing interest in PBM as a supportive treatment in cases of OM, as well as the evolution of the technique, types of laser devices, and protocols used

    Methylmercury Causes Neurodegeneration and Downregulation of Myelin Basic Protein in the Spinal Cord of Offspring Rats after Maternal Exposure

    No full text
    Methylmercury (MeHg) is one of the most dangerous toxic pollutants spread throughout the earth. Chronic MeHg intoxication by contaminated food ingestion is the most common threat to human health, including impairment to the developing fetus. The present study aims at investigating the effects of maternal exposure to MeHg during gestation and lactation on the spinal cord of offspring. Pregnant rats received oral doses of MeHg (40 μg/kg/day) over a period of 42 days (21 gestation and 21 lactation). Control animals received the vehicle only. Total mercury concentration was measured in blood samples from offspring collected at the 41st postnatal day. Counting of motor neurons and immunoreactivity for myelin basic protein (MBP) were assessed in the spinal cords in both control and MeHg-intoxicated animals. Our results showed that MeHg promoted an increase in blood Hg levels. In addition, it caused a reduction in the number of spinal cord motor neurons as well as decreased MBP immunoreactivity in the cervical, thoracic and lumbar segments. Our present findings suggest that MeHg intoxication during rat pregnancy and lactation is associated with a pattern of motor neuron degeneration and downregulation of myelin basic protein in different segments of a developing spinal cord. Further studies are needed to establish the effect of MeHg intoxication in both young and adult rats

    Methylmercury Causes Neurodegeneration and Downregulation of Myelin Basic Protein in the Spinal Cord of Offspring Rats after Maternal Exposure

    No full text
    Methylmercury (MeHg) is one of the most dangerous toxic pollutants spread throughout the earth. Chronic MeHg intoxication by contaminated food ingestion is the most common threat to human health, including impairment to the developing fetus. The present study aims at investigating the effects of maternal exposure to MeHg during gestation and lactation on the spinal cord of offspring. Pregnant rats received oral doses of MeHg (40 μg/kg/day) over a period of 42 days (21 gestation and 21 lactation). Control animals received the vehicle only. Total mercury concentration was measured in blood samples from offspring collected at the 41st postnatal day. Counting of motor neurons and immunoreactivity for myelin basic protein (MBP) were assessed in the spinal cords in both control and MeHg-intoxicated animals. Our results showed that MeHg promoted an increase in blood Hg levels. In addition, it caused a reduction in the number of spinal cord motor neurons as well as decreased MBP immunoreactivity in the cervical, thoracic and lumbar segments. Our present findings suggest that MeHg intoxication during rat pregnancy and lactation is associated with a pattern of motor neuron degeneration and downregulation of myelin basic protein in different segments of a developing spinal cord. Further studies are needed to establish the effect of MeHg intoxication in both young and adult rats

    What Is Known about Midazolam? A Bibliometric Approach of the Literature

    No full text
    Midazolam is a drug with actions towards the central nervous system producing sedative and anticonvulsants effects, used for sedation and seizures treatments. A better understanding about its effects in the different scenarios presented in the literature could be helpful to gather information regarding its clinical indications, pharmacological interactions, and adverse events. From this perspective, the aim of this study was to analyze the global research about midazolam mapping, specifically the knowledge of the 100 most-cited papers about this research field. For this, a search was executed on the Web of Science-Core Collection database using bibliometric methodological tools. The search strategy retrieved 34,799 articles. A total of 170 articles were evaluated, with 70 articles being excluded for not meeting the inclusion criteria. The 100 most-cited articles rendered 42,480 citations on WoS-CC, ranging from 253 to 1744. Non-systematic review was the most published study type, mainly from North America, during the period of 1992 to 2002. The most frequent keywords were midazolam and pharmacokinetics. Regarding the authors, Thummel and Kunze were the ones with the greatest number of papers included. Our findings showed the global research trends about midazolam, mainly related to its different effects and uses throughout the time

    Dental Caries and Salivary Oxidative Stress: Global Scientific Research Landscape

    No full text
    This study aimed to analyze the research trends on salivary oxidative stress associated with dental caries and to perform bibliometric approaches for existing publications on this association. A search was performed using the Web of Science Core Collection, without any restriction of language or publication year. The number of periodicals with the most published articles in this theme, most published authors and keywords were mapped; other metrics were also evaluated such as the countries that have more research on the subject and the period in which there were more publications on the subject. During the knowledge mapping, the most frequent experimental designs were analyzed, type of saliva collection, stage of caries disease, evaluated oxidative parameters were retrieved and analyzed from each manuscript. Between the 43 selected articles, the Journal of Clinical Pediatric Dentistry was the periodical appearing the most with 4 published articles. The authors who published the most were Celec, P., Tothova, L., Hegde, A.M., Shetty, S., Antoniali, C., and Pessan, JP with three articles each, and a total of 180 keywords representing the evolution of the theme. India and Asia were found to be the country and continent with most publications, respectively. Most articles collected non-stimulated total saliva, with total antioxidant capacity being the parameter most often evaluated. The type of study that appeared the most was cross-sectional studies, and articles published in the period of 2017–2022 were the most frequent. Studies show that dental caries can be associated to the changes in salivary oxidative biochemistry with an increase in lipid peroxidation, a biomarker of oxidative damage, and an increase in antioxidant capacity in chronic caries, in response to cariogenic challenge. Some studies evidence the reduction of lipid peroxidation after treatment of the carious lesion. Our findings reveal worldwide research trends, as well as a clearer knowledge of the evolution and future scenarios of this issue, also showing the mechanisms associating dental caries with changes in salivary oxidative biochemical parameters are not clear

    Dental Caries and Salivary Oxidative Stress: Global Scientific Research Landscape

    No full text
    This study aimed to analyze the research trends on salivary oxidative stress associated with dental caries and to perform bibliometric approaches for existing publications on this association. A search was performed using the Web of Science Core Collection, without any restriction of language or publication year. The number of periodicals with the most published articles in this theme, most published authors and keywords were mapped; other metrics were also evaluated such as the countries that have more research on the subject and the period in which there were more publications on the subject. During the knowledge mapping, the most frequent experimental designs were analyzed, type of saliva collection, stage of caries disease, evaluated oxidative parameters were retrieved and analyzed from each manuscript. Between the 43 selected articles, the Journal of Clinical Pediatric Dentistry was the periodical appearing the most with 4 published articles. The authors who published the most were Celec, P., Tothova, L., Hegde, A.M., Shetty, S., Antoniali, C., and Pessan, JP with three articles each, and a total of 180 keywords representing the evolution of the theme. India and Asia were found to be the country and continent with most publications, respectively. Most articles collected non-stimulated total saliva, with total antioxidant capacity being the parameter most often evaluated. The type of study that appeared the most was cross-sectional studies, and articles published in the period of 2017–2022 were the most frequent. Studies show that dental caries can be associated to the changes in salivary oxidative biochemistry with an increase in lipid peroxidation, a biomarker of oxidative damage, and an increase in antioxidant capacity in chronic caries, in response to cariogenic challenge. Some studies evidence the reduction of lipid peroxidation after treatment of the carious lesion. Our findings reveal worldwide research trends, as well as a clearer knowledge of the evolution and future scenarios of this issue, also showing the mechanisms associating dental caries with changes in salivary oxidative biochemical parameters are not clear

    Açaí (Euterpe oleracea Mart.) Attenuates Oxidative Stress and Alveolar Bone Damage in Experimental Periodontitis in Rats

    No full text
    Açaí (Euterpe oleracea Mart.) juice is rich in phenolic compounds with high antioxidant capacity. It has been observed that the use of antioxidants may be an additional strategy to nonsurgical periodontal therapy as well as to prevent alveolar bone loss. Thus, the objective of this study was to investigate the effects of açaí supplementation on experimental periodontitis in rats. Twenty male Rattus norvegicus (Wistar) rats were assigned into control, açaí, experimental periodontitis, and experimental periodontitis with açaí supplementation groups. Periodontitis was induced by placing ligatures around the lower first molars. Animals in the açaí groups received 0.01 mL/g of clarified açaí juice for 14 days by intragastric gavage. At the end of the experimental period, blood was collected to assess the reduced glutathione (GSH), Trolox equivalent antioxidant capacity (TEAC), and lipid peroxidation (TBARS) levels. Moreover, hemimandibles were analyzed by micro-computed tomography (micro-CT) for alveolar bone loss and bone quality. Açaí supplementation increased blood total antioxidant capacity and decreased lipid peroxidation. It also reduced alveolar bone loss when compared to the experimental periodontitis group. Moreover, clarified açaí per se modulated the oxidative biochemistry and bone microstructure. Thus, açaí may be considered a viable alternative for managing periodontal oxidative stress and preventing alveolar bone loss
    corecore