4 research outputs found

    Genome of Linum usitatissimum convar. crepitans expands the view on the section Linum

    Get PDF
    Sequencing whole plant genomes provides a solid foundation for applied and basic studies. Genome sequences of agricultural plants attract special attention, as they reveal information on the regulation of beneficial plant traits. Flax is a valuable crop cultivated for oil and fiber. Genome sequences of its representatives are rich sources of genetic information for the improvement of cultivated forms of the plant. In our work, we sequenced the first genome of flax with the dehiscence of capsules—Linum usitatissimum convar. сrepitans (Boenn.) Dumort—on the Oxford Nanopore Technologies (ONT) and Illumina platforms. We obtained 23 Gb of raw ONT data and 89 M of 150 + 150 paired-end Illumina reads and tested different tools for genome assembly and polishing. The genome assembly produced according to the Canu—Racon ×2—medaka—POLCA scheme had optimal contiguity and completeness: assembly length—412.6 Mb, N50—5.2 Mb, L50—28, and complete BUSCO—94.6% (64.0% duplicated, eudicots_odb10). The obtained high-quality genome assembly of L. usitatissimum convar. crepitans provides opportunities for further studies of evolution, domestication, and genome regulation in the section Linum

    Comparative wood anatomy of Astropanax and Neocussonia, an Afro-Malagasy lineage of Araliaceae

    No full text
    Astropanax and Neocussonia are two recently resurrected genera of Araliaceae that had long been considered as an Afro-Malagasy lineage of Schefflera. The wood structure of 11 Neocussonia spp. and eight Astropanax spp. has been studied. Neocussonia shows a higher average length of vessel elements (1319 μm) and number of bars on perforation plates (up to 66) than any other Araliaceae examined to date. Neocussonia is distinct from Astropanax by its smaller diameter and higher frequency of vessels, rare occurrence of simple perforation plates, more numerous bars on scalariform perforation plates and smaller intervessel pits. The interspecific variation in percentage of simple perforation plates, bar number on scalariform perforation plates, vessel frequency and uniseriate ray number is affected by seasonality in temperature and precipitation. The sharp distinction in wood structure between samples of A. abyssinicus from Cameroon and Burundi suggests that the populations from different parts of the disjunct range represent two different species. Our data also suggest that A. goetzenii is an artificial group. Astropanax myrianthus from Madagascar and A. polysciadus from continental Africa, two cryptic species that have long been included in Schefflera myriantha, show significant differences in vessel size and grouping, percentage of simple perforation plates and intervessel pit size

    ITS and 16S rDNA metagenomic dataset of different soils from flax fields

    No full text
    Flax (Linum usitatissimum L.), one of the important and versatile crops, is used for the production of oil and fiber. To obtain high and stable yields of flax products, L. usitatissimum varieties should be cultivated under optimal conditions, including the composition of the soil microbiome. We evaluated the diversity of microorganisms in soils under conditions unfavorable for flax cultivation (suboptimal acidity or herbicide treatment) or infected with causative agents of harmful flax diseases (Septoria linicola, Colletotrichum lini, Melampsora lini, or Fusarium oxysporum f. sp. lini). For this purpose, twenty-two sod-podzolic soil samples were collected from flax fields and their metagenomes were analyzed using the regions of 16S ribosomal RNA gene (16S rDNA) and internal transcribed spacers (ITS) of the ribosomal RNA genes, which are used in phylogenetic studies of bacteria and fungi. Amplicons were sequenced on the Illumina MiSeq platform (reads of 300 + 300 bp). On average, we obtained 8,400 reads for ITS and 43,300 reads for 16S rDNA per sample. For identification of microorganisms in the soil samples, the Illumina reads were processed using DADA2. The raw data are deposited in the Sequence Read Archive under the BioProject accession number PRJNA956957. Tables listing the microorganisms identified in the soil samples are available in this article. The obtained dataset can be used to analyze the fungal and bacterial composition of flax field soils and their relationship to environmental conditions, including suboptimal soil acidity and infection with fungal pathogens. In addition, it can help to understand the influence of herbicide treatment on the microbial diversity of flax fields. Another useful application of our data is the ability to assess the suitability of the soil microbiome for flax cultivation

    Isolating Linum usitatissimum L. Nuclear DNA Enabled Assembling High-Quality Genome

    No full text
    High-quality genome sequences help to elucidate the genetic basis of numerous biological processes and track species evolution. For flax (Linum usitatissimum L.)—a multifunctional crop, high-quality assemblies from Oxford Nanopore Technologies (ONT) data were unavailable, largely due to the difficulty of isolating pure high-molecular-weight DNA. This article proposes a scheme for gaining a contiguous L. usitatissimum assembly using Nanopore data. We developed a protocol for flax nuclei isolation with subsequent DNA extraction, which allows obtaining about 5 μg of pure high-molecular-weight DNA from 0.5 g of leaves. Such an amount of material can be collected even from a single plant and yields more than 30 Gb of ONT data in two MinION runs. We performed a comparative analysis of different genome assemblers and polishers on the gained data and obtained the final 447.1-Mb assembly of L. usitatissimum line 3896 genome using the Canu—Racon (two iterations)—Medaka combination. The genome comprised 1695 contigs and had an N50 of 6.2 Mb and a completeness of 93.8% of BUSCOs from eudicots_odb10. Our study highlights the impact of the chosen genome construction strategy on the resulting assembly parameters and its eligibility for future genomic studies
    corecore