21,544 research outputs found

    Strong GeV Emission Accompanying TeV Blazar H1426+428

    Full text link
    For High frequency BL Lac objects (HBLs) like H1426+428, a significant fraction of their TeV gamma-rays emitted are likely to be absorbed in interactions with the diffuse IR background, yielding e±e^\pm pairs. The resulting e±e^\pm pairs generate one hitherto undiscovered GeV emission by inverse Compton scattering with the cosmic microwave background photons (CMBPs). We study such emission by taking the 1998-2000 CAT data, the reanalyzed 1999 & 2000 HEGRA data and the corresponding intrinsic spectra proposed by Aharonian et al. (2003a). We numerically calculate the scattered photon spectra for different intergalactic magnetic field (IGMF) strengths. If the IGMF is about 10−18G10^{-18}{\rm G} or weaker, there comes very strong GeV emission, whose flux is far above the detection sensitivity of the upcoming satellite GLAST! Considered its relatively high redshift (z=0.129z=0.129), the detected GeV emission in turn provides us a valuable chance to calibrate the poor known spectral energy distribution of the intergalactic infrared background, or provides us some reliable constraints on the poorly known IGMF strength.Comment: 5 pages, 1 figure. A&A in Pres

    Spectrum and Duration of Delayed MeV-GeV Emission of Gamma-Ray Bursts in Cosmic Background Radiation Fields

    Full text link
    We generally analyze prompt high-energy emission above a few hundreds of GeV due to synchrotron self-Compton scattering in internal shocks. However, such photons cannot be detected because they may collide with cosmic infrared background photons, leading to electron/positron pair production. Inverse-Compton scattering of the resulting electron/positron pairs off cosmic microwave background photons will produce delayed MeV-GeV emission, which may be much stronger than a typical high-energy afterglow in the external shock model. We expand on the Cheng & Cheng model by deriving the emission spectrum and duration in the standard fireball shock model. A typical duration of the emission is ~ 10^3 seconds, and the time-integrated scattered photon spectrum is nu^{-(p+6)/4}, where p is the index of the electron energy distribution behind internal shocks. This is slightly harder than the synchrotron photon spectrum, nu^{-(p+2)/2}. The lower energy property of the scattered photon spectrum is dependent on the spectral energy distribution of the cosmic infrared background radiation. Therefore, future observations on such delayed MeV-GeV emission and the higher-energy spectral cutoff by the Gamma-Ray Large Area Space Telescope (GLAST) would provide a probe of the cosmic infrared background radiation.Comment: 5 pages, accepted for publication in Ap

    The Afterglow of GRB 990123 and a Dense Medium

    Get PDF
    Recent observations show that the temporal decay of the R-band afterglow from GRB 990123 steepened about 2.5 days after the burst. We here propose a possible explanation for such a steepening: a shock expanding in a dense medium has undergone the transition from a relativistic phase to a nonrelativistic phase. We find that this model is consistent with the observations if the medium density is about 3×106cm−33\times 10^6 {\rm cm}^{-3}. By fitting our model to the observed optical and X-ray afterglow quantitatively, we further infer the electron and magnetic energy fractions of the shocked medium and find these two parameters are about 0.1 and 2×10−82\times 10^{-8} respectively. The former parameter is near the equipartition value while the latter is about six orders of magnitude smaller than inferred from the GRB 970508 afterglow. We also discuss possibilities that the dense medium can be produced.Comment: 12 pages, LaTeX, published in ApJ Letter

    Can the Bump be Observed in the Early Afterglow of GRBS with X-Ray Line Emission Features?

    Full text link
    Extremely powerful emission lines are observed in the X-ray afterglow of several GRBs. The energy contained in the illuminating continuum which is responsible for the line production exceeds 1051^{51} erg, much higher than that of the collimated GRBs. It constrains the models which explain the production of X-ray emission lines. In this paper, We argue that this energy can come from a continuous postburst outflow. Focusing on a central engine of highly magnetized millisecond pulsar or magnetar we find that afterglow can be affected by the illuminating continuum, and therefore a distinct achromatic bump may be observed in the early afterglow lightcurves. With the luminosity of the continuous outflow which produces the line emission, we define the upper limit of the time when the bump feature appears. We argue that the reason why the achromatic bumps have not been detected so far is that the bumps should appear at the time too early to be observed.Comment: 13 pags, 2 tables, appear in v603 n1 pt1 ApJ March 1, 2004 issu

    Gamma-Ray Burst Afterglows from Realistic Fireballs

    Get PDF
    A GRB afterglow has been commonly thought to be due to continuous deceleration of a postburst fireball. Many analytical models have made simplifications for deceleration dynamics of the fireball and its radiation property, although they are successful at explaining the overall features of the observed afterglows. We here propose a model for a GRB afterglow in which the evolution of a postburst fireball is in an intermediate case between the adiabatic and highly radiative expansion. In our model, the afterglow is both due to the contribution of the adiabatic electrons behind the external blastwave of the fireball and due to the contribution of the radiative electrons. In addition, this model can describe evolution of the fireball from the extremely relativistic phase to the non-relativistic phase. Our calculations show that the fireball will go to the adiabatic expansion phase after about a day if the accelerated electrons are assumed to occupy the total internal energy. In all cases considered, the fireball will go to the mildly relativistic phase about 10410^4 seconds later, and to the non-relativistic phase after several days. These results imply that the relativistic adiabatic model cannot describe the deceleration dynamics of the several-days-later fireball. The comparison of the calculated light curves with the observed results at late times may imply the presence of impulsive events or energy injection with much longer durations.Comment: 18 pages, 10 figures, plain latex file, submitted to Ap

    Early photon-shock interaction in stellar wind: sub-GeV photon flash and high energy neutrino emission from long GRBs

    Full text link
    For gamma-ray bursts (GRBs) born in a stellar wind, as the reverse shock crosses the ejecta, usually the shocked regions are still precipitated by the prompt MeV \gamma-ray emission. Because of the tight overlapping of the MeV photon flow with the shocked regions, the optical depth for the GeV photons produced in the shocks is very large. These high energy photons are absorbed by the MeV photon flow and generate relativistic e^\pm pairs. These pairs re-scatter the soft X-ray photons from the forward shock as well as the prompt \gamma-ray photons and power detectable high energy emission, significant part of which is in the sub-GeV energy range. Since the total energy contained in the forward shock region and the reverse shock region are comparable, the predicted sub-GeV emission is independent on whether the GRB ejecta are magnetized (in which case the reverse shock IC and synchrotron self-Compton emission is suppressed). As a result, a sub-GeV flash is a generic signature for the GRB wind model, and it should be typically detectable by the future {\em Gamma-Ray Large Area Telescope} (GLAST). Overlapping also influence neutrino emission. Besides the 10^{15} \sim 10^{17} eV neutrino emission powered by the interaction of the shock accelerated protons with the synchrotron photons in both the forward and reverse shock regions, there comes another 101410^{14}eV neutrino emission component powered by protons interacting with the MeV photon flow. This last component has a similar spectrum to the one generated in the internal shock phase, but the typical energy is slightly lower.Comment: 7 pages, accepted for publication in Ap

    Late-Time Optical Afterglow Observations with LBT and MDM

    Full text link
    Using the 2.4m MDM and 8.4m Large Binocular Telescope, we observed nine GRB afterglows to systematically probe the late time behaviors of afterglows including jet breaks, flares, and supernova bumps. In particular, the LBT observations have typical flux limits of 25-26 mag in the Sloan r' band, which allows us to extend the temporal baseline for measuring jet breaks by another decade in time scale. We detected four jet breaks (including a "textbook" jet break in GRB070125) and a fifth candidate, all of which are not detectable without deep, late time optical observations. In the other four cases, we do not detect the jet breaks either because of contamination from the host galaxy light, the presence of a supernova bump, or the intrinsic faintness of the optical afterglow. This suggests that the basic picture that GRBs are collimated is still valid and that the apparent lack of Swift jet breaks is due to poorly sampled afterglow light curves, particularly at late times. Besides the jet breaks, we also detected late time flares, which could attribute to late central engine activities, and two supernova bumps.Comment: 5 pages, 5 figures, 2008 NANJING GAMMA-RAY BURST CONFERENCE. AIP Conference Proceedings, Volume 1065, pp. 93-97 (2008), Eds. Y.F. Huang, Z.G. Dai, B. Zhan
    • 

    corecore