1,199 research outputs found

    Distinct responses of planktonic foraminiferal B/Ca to dissolution on seafloor

    Get PDF
    We have measured B/Ca in four core-top planktonic foraminiferal species (Globigerinoides ruber (white), Globigerinoides sacculifer (without final sac-like chamber), Neogloboquadrina dutertrei, and Pulleniatina obliquiloculata) from three depth transects (the Caribbean Sea, the southwestern Indian Ocean, and the Ontong Java Plateau) to evaluate the effect of dissolution on planktonic foraminiferal B/Ca. At each transect, G. ruber (w) and G. sacculifer (w/o sac) show decreasing B/Ca with increasing water depth. This decrease in B/Ca is accompanied with decreases in shell weights, Mg/Ca, and bottom water calcite saturation state. This indicates a postdepositional dissolution effect on B/Ca in these two species. The strong correlation observed between changes in B/Ca and bottom water calcite saturation state offers an approach to correcting for the dissolution bias. By contrast, B/Ca in N. dutertrei and P. obliquiloculata remains unchanged along depth transects, although shell weights and Mg/Ca display significant declines. Overall, our core-top results suggest species-specific dissolution effects on B/Ca in different planktonic foraminiferal species

    A cyclical period variation detected in the updated orbital period analysis of TV Columbae

    Get PDF
    The two CCD photometries of the intermediate polar TV Columbae are made for obtaining the two updated eclipse timings with high precision. There is an interval time \sim 17yr since the last mid-eclipse time observed in 1991. Thus, the new mid-eclipse times can offer an opportunity to check the previous orbital ephemerides. A calculation indicates that the orbital ephemeris derived by Augusteijn et al. (1994) should be corrected. Based on the proper linear ephemeris (Hellier, 1993), the new orbital period analysis suggests a cyclical period variation in the O-C diagram of TV Columbae. Using Applegate's mechanism to explain the periodic oscillation in O-C diagram, the required energy is larger than that a M0-type star can afford over a complete variation period \sim 31.0(\pm 3.0)yr. Thus, the light travel-time effect indicates that the tertiary component in TV Columbae may be a dwarf with a low mass, which is near the mass lower limit \sim 0.08Msun as long as the inclination of the third body high enough.Comment: 10 pages, 5 figure

    BPS R-balls in N=4 SYM on R X S^3, Quantum Hall Analogy and AdS/CFT Holography

    Get PDF
    In this paper, we propose a new approach to study the BPS dynamics in N=4 supersymmetric U(N) Yang-Mills theory on R X S^3, in order to better understand the emergence of gravity in the gauge theory. Our approach is based on supersymmetric, space-filling Q-balls with R-charge, which we call R-balls. The usual collective coordinate method for non-topological scalar solitons is applied to quantize the half and quarter BPS R-balls. In each case, a different quantization method is also applied to confirm the results from the collective coordinate quantization. For finite N, the half BPS R-balls with a U(1) R-charge have a moduli space which, upon quantization, results in the states of a quantum Hall droplet with filling factor one. These states are known to correspond to the ``sources'' in the Lin-Lunin-Maldacena geometries in IIB supergravity. For large N, we find a new class of quarter BPS R-balls with a non-commutativity parameter. Quantization on the moduli space of such R-balls gives rise to a non-commutative Chern-Simons matrix mechanics, which is known to describe a fractional quantum Hall system. In view of AdS/CFT holography, this demonstrates a profound connection of emergent quantum gravity with non-commutative geometry, of which the quantum Hall effect is a special case.Comment: 42 pages, 2 figures; v3: a new paragraph on counting unbroken susy of NC R-balls and references adde

    Localized Flux Lines and the Bose Glass

    Full text link
    Columnar defects provide effective pinning centers for magnetic flux lines in high--TcT_{\rm c} superconductors. Utilizing a mapping of the statistical mechanics of directed lines to the quantum mechanics of two--dimensional bosons, one expects an entangled flux liquid phase at high temperatures, separated by a second--order localization transition from a low--temperature ``Bose glass'' phase with infinite tilt modulus. Recent decoration experiments have demonstrated that below the matching field the repulsive forces between the vortices may be sufficiently large to produce strong spatial correlations in the Bose glass. This is confirmed by numerical simulations, and a remarkably wide soft ``Coulomb gap'' at the chemical potential is found in the distribution of pinning energies. At low currents, the dominant transport mechanism in the Bose glass phase proceeds via the formation of double kinks between not necessarily adjacent columnar pins, similar to variable--range hopping in disordered semiconductors. The strong correlation effects originating in the long--range vortex interactions drastically reduce variable--range hopping transport.Comment: 10 pages, latex ("lamuphys.sty" file included), 6 figures can be obtained from the author ([email protected]); to appear in Proc. XIV Sitges conference on "Complex Behaviour of Glassy Systems" (Springer--Verlag

    Supergravity Solutions for BI Dyons

    Get PDF
    We construct partially localized supergravity counterpart solutions to the 1/2 supersymmetric non-threshold and the 1/4 supersymmetric threshold bound state BI dyons in the D3-brane Dirac-Born-Infeld theory. Such supergravity solutions have all the parameters of the BI dyons. By applying the IIA/IIB T-duality transformations to these supergravity solutions, we obtain the supergravity counterpart solutions to 1/2 and 1/4 supersymmetric BIons carrying electric and magnetic charges of the worldvolume U(1) gauge field in the Dirac-Born-Infeld theory in other dimensions.Comment: 17 pages, REVTeX, revised version to appear in Phys. Rev.

    Interactions, Distribution of Pinning Energies, and Transport in the Bose Glass Phase of Vortices in Superconductors

    Full text link
    We study the ground state and low energy excitations of vortices pinned to columnar defects in superconductors, taking into account the long--range interaction between the fluxons. We consider the ``underfilled'' situation in the Bose glass phase, where each flux line is attached to one of the defects, while some pins remain unoccupied. By exploiting an analogy with disordered semiconductors, we calculate the spatial configurations in the ground state, as well as the distribution of pinning energies, using a zero--temperature Monte Carlo algorithm minimizing the total energy with respect to all possible one--vortex transfers. Intervortex repulsion leads to strong correlations whenever the London penetration depth exceeds the fluxon spacing. A pronounced peak appears in the static structure factor S(q)S(q) for low filling fractions f0.3f \leq 0.3. Interactions lead to a broad Coulomb gap in the distribution of pinning energies g(ϵ)g(\epsilon) near the chemical potential μ\mu, separating the occupied and empty pins. The vanishing of g(ϵ)g(\epsilon) at μ\mu leads to a considerable reduction of variable--range hopping vortex transport by correlated flux line pinning.Comment: 16 pages (twocolumn), revtex, 16 figures not appended, please contact [email protected]

    Non-tachyonic Scherk-Schwarz compactifications, cosmology and moduli stabilization

    Full text link
    It is well-known that Scherk-Schwarz compactifications in string theory have a tachyon in the closed string spectrum appearing for a critical value of a compact radius. The tachyon can be removed by an appropriate orientifold projection in type II strings, giving rise to tachyon-free compactifications. We present explicit examples of this type in various dimensions, including six and four-dimensional chiral examples, with softly broken supersymmetry in the closed sector and non-BPS configurations in the open sector. These vacua are interesting frameworks for studying various cosmological issues. We discuss four-dimensional cosmological solutions and moduli stabilization triggered by nonperturbative effects like gaugino condensation on D-branes and fluxes.Comment: 36 pages, LaTeX; added reference

    Jain States in a Matrix Theory of the Quantum Hall Effect

    Get PDF
    The U(N) Maxwell-Chern-Simons matrix gauge theory is proposed as an extension of Susskind's noncommutative approach. The theory describes D0-branes, nonrelativistic particles with matrix coordinates and gauge symmetry, that realize a matrix generalization of the quantum Hall effect. Matrix ground states obtained by suitable projections of higher Landau levels are found to be in one-to-one correspondence with the expected Laughlin and Jain hierarchical states. The Jain composite-fermion construction follows by gauge invariance via the Gauss law constraint. In the limit of commuting, ``normal'' matrices the theory reduces to eigenvalue coordinates that describe realistic electrons with Calogero interaction. The Maxwell-Chern-Simons matrix theory improves earlier noncommutative approaches and could provide another effective theory of the fractional Hall effect.Comment: 35 pages, 3 figure

    Resonance peak in underdoped cuprates

    Full text link
    The magnetic susceptibility measured in neutron scattering experiments in underdoped YBa2_2Cu3_3O7y_{7-y} is interpreted based on the self-consistent solution of the t-J model of a Cu-O plane. The calculations reproduce correctly the frequency and momentum dependencies of the susceptibility and its variation with doping and temperature in the normal and superconducting states. This allows us to interpret the maximum in the frequency dependence -- the resonance peak -- as a manifestation of the excitation branch of localized Cu spins and to relate the frequency of the maximum to the size of the spin gap. The low-frequency shoulder well resolved in the susceptibility of superconducting crystals is connected with a pronounced maximum in the damping of the spin excitations. This maximum is caused by intense quasiparticle peaks in the hole spectral function for momenta near the Fermi surface and by the nesting.Comment: 9 pages, 6 figure

    Quark Hadron Phase Transition and Hybrid Stars

    Get PDF
    We investigate the properties of hybrid stars consisting of quark matter in the core and hadron matter in outer region. The hadronic and quark matter equations of state are calculated by using nonlinear Walecka model and chiral colour dielectric (CCD) model respectively. We find that the phase transition from hadron to quark matter is possible in a narrow range of the parameters of nonlinear Walecka and CCD models. The transition is strong or weak first order depending on the parameters used. The EOS thus obtained, is used to study the properties of hybrid stars. We find that the calculated hybrid star properties are similar to those of pure neutron stars.Comment: 25 pages in LaTex and 9 figures available on request, IP/BBSR/94-3
    corecore