25,385 research outputs found

    Behavior of X-Ray Dust Scattering and Implications for X-Ray Afterglows of Gamma-Ray Bursts

    Full text link
    The afterglows of gamma-ray bursts (GRBs) have commonly been assumed to be due to shocks sweeping up the circum-stellar medium. However, most GRBs have been found in dense star-forming regions where a significant fraction of the prompt X-ray emission can be scattered by dust grains. Here we revisit the behavior of dust scattering of X-rays in GRBs. We find that the features of some X-ray afterglows from minutes to days after the gamma-ray triggers are consistent with the scattering of prompt X-ray emission from GRBs off host dust grains. This implies that some of the observed X-ray afterglows (especially those without sharp rising and decaying flares) could be understood with a dust-scattering--driven emission model.Comment: ApJ, in pres

    Echo Emission From Dust Scattering and X-Ray Afterglows of Gamma-Ray Bursts

    Full text link
    We investigate the effect of X-ray echo emission in gamma-ray bursts (GRBs). We find that the echo emission can provide an alternative way of understanding X-ray shallow decays and jet breaks. In particular, a shallow decay followed by a "normal" decay and a further rapid decay of X-ray afterglows can be together explained as being due to the echo from prompt X-ray emission scattered by dust grains in a massive wind bubble around a GRB progenitor. We also introduce an extra temporal break in the X-ray echo emission. By fitting the afterglow light curves, we can measure the locations of the massive wind bubbles, which will bring us closer to finding the mass loss rate, wind velocity, and the age of the progenitors prior to the GRB explosions.Comment: 25 pages, 3 figures, 2 tables. Accepted for publication in Ap

    High energy neutrinos from magnetars

    Full text link
    Magnetars can accelerate cosmic rays to high energies through the unipolar effect, and are also copious soft photon emitters. We show that young, fast-rotating magnetars whose spin and magnetic moment point in opposite directions emit high energy neutrinos from their polar caps through photomeson interactions. We identify a neutrino cut-off band in the magnetar period-magnetic field strength phase diagram, corresponding to the photomeson interaction threshold. Within uncertainties, we point out four possible neutrino emission candidates among the currently known magnetars, the brightest of which may be detectable for a chance on-beam alignment. Young magnetars in the universe would also contribute to a weak diffuse neutrino background, whose detectability is marginal, depending on the typical neutrino energy.Comment: emulateapj style, 6 pages, 1 figure, ApJ, v595, in press. Important contributions from Dr. Harding added. Major revisions made. More conservative and realistic estimates about the neutrino threshold condition and emission efficiency performed. More realistic typical beaming angle and magnetar birth rate adopte

    Neutrino emission from a GRB afterglow shock during an inner supernova shock breakout

    Full text link
    The observations of a nearby low-luminosity gamma-ray burst (GRB) 060218 associated with supernova SN 2006aj may imply an interesting astronomical picture where a supernova shock breakout locates behind a relativistic GRB jet. Based on this picture, we study neutrino emission for early afterglows of GRB 060218-like GRBs, where neutrinos are expected to be produced from photopion interactions in a GRB blast wave that propagates into a dense wind. Relativistic protons for the interactions are accelerated by an external shock, while target photons are basically provided by the incoming thermal emission from the shock breakout and its inverse-Compton scattered component. Because of a high estimated event rate of low-luminosity GRBs, we would have more opportunities to detect afterglow neutrinos from a single nearby GRB event of this type by IceCube. Such a possible detection could provide evidence for the picture described above.Comment: 6 pages, 2 figures, accepted for publication in MNRA

    Constraints on the neutrino mass and the primordial magnetic field from the matter density fluctuation parameter σ8\sigma_8

    Full text link
    We have made an analysis of limits on the neutrino mass based upon the formation of large-scale structure in the presence of a primordial magnetic field. We find that a new upper bound on the neutrino mass is possible based upon fits to the cosmic microwave background and matter power spectrum when the existing independent constraints on the matter density fluctuation parameter σ8\sigma_8 and the primordial magnetic field are taken into account.Comment: 6 pages, 2 figures, final version to appear in Phys. Rev. D, to match proof

    Semileptonic B decays into excited charmed mesons from QCD sum rules

    Get PDF
    Exclusive semileptonic BB decays into excited charmed mesons are studied with QCD sum rules in the leading order of heavy quark effective theory. Two universal Isgur-Wise functions \tau and \zeta for semileptonic B decays into four lowest lying excited DD mesons (D1D_1, D2∗D_2^*, D0′D'_0, and D1′D'_1) are determined. The decay rates and branching ratios for these processes are calculated.Comment: RevTeX, 17 pages including 2 figure
    • …
    corecore