16 research outputs found
Mitochondrial Genome Map of S. inversa
Mitochondrial Genome Map of S. inversa</p
Tunable luminescence of doped MAI2SI2O8 aluminosilicates (M=Ca, Sr, Ba)
Pour espérer résoudre les problèmes de réchauffement de la planète, il devient urgent de promouvoir toute action susceptible de conduire à des économies d'énergie. A ce jour, 20% de la production d'électricité sont dédiés à l'éclairage. Dès lors, dans un contexte où la demande en énergie va croissante en relation avec une population mondiale toujours plus importante, la découverte de nouvelles sources lumineuses s'avère être primordiale pour favoriser la diminution de la consommation d'énergie électrique, tout en respectant au maximum les nouveaux impératifs environnementaux via l'augmentation de la fiabilité des dispositifs, leur temps de vie et l'innocuité des produits commercialisés. Seul un nombre très restreint de matériaux luminescents peut aujourd'hui répondre aux exigences précitées. Pourtant les dispositifs à base de diodes électroluminescentes sont appelés à remplacer les sources d'éclairages classiques à court terme. Cette thèse a pour objectif l'élaboration de luminophores blancs excitables dans l'UV. Notre attention s'est portée sur l'étude d'aluminosilicates de formulation MAl2Si2O8 (M = Ca, Sr, Ba) dopés avec des ions Eu2+, Eu3+, Ce3+ et Mn2+ cations qui jouent le rôle d'activateur, de sensibilisateur ou de sensibilisateur et d'activateur. Le transfert d'énergie du cérium vers le manganèse a été mis en évidence et permet l'obtention d'une couleur plus chaude qu'avec la phase au cérium seul. Par ailleurs, la possibilité de stabiliser de façon concomitante des ions Eu2+ et Eu3+ dans le réseau hôte au travers de synthèse à l'air est démontrée, la concentration en Eu2+ pouvant être partiellement contrôlée au travers d'un choix approprié d'un co-dopant.To address issues of global warming, promotion of energy-saving actions has become an urgent duty. Nowadays, approximately 20% of global electricity consumption is used for illumination only. In a context where the ever-increasing energy demand is coupled with a regular population growth, it is of prime importance to discover new light sources that could offer benefits in terms of electrical energy consumption, luminous efficiency, but also maintenance, reliability, lifetime, environmental protection, etc. So far only a very limited number of phosphors can fulfil the requirements for white-light LED applications, i.e. a high quantum yield, a high colour quality, a long stability. Hence, white light emitting diodes receive a strong incentive with the expectation to replace conventional and fluorescent lamps for general lighting applications in the near future. This thesis aims exclusively at the development of a next generation of LED sources based on the association of a near UV-LED chip with an innovative inorganic single phase white emitting phosphor. We will focus our attention on the optical properties of (co)doped MAl2Si2O8 phosphors (M= Ca, Sr, Ba) where Eu2+, Eu3+, Ce3+ and Mn2+ cations can play the role of activator, sensitizer, or both sensitizer and activator. In particular, we evidence that Mn2+ cations can be pumped via energy transfers to give rise to a warmer light compared to Ce only based materials, while Eu2+ and Eu3+ can be stabilized naturally in MAl2Si2O8 host lattices when prepared in air with a partial control of the Eu2+ concentration via the use of appropriate codopants.NANTES-BU Sciences (441092104) / SudocSudocFranceF
Tunable luminescence of doped MAI2SI2O8 aluminosilicates (M=Ca, Sr, Ba)
Pour espérer résoudre les problèmes de réchauffement de la planète, il devient urgent de promouvoir toute action susceptible de conduire à des économies d'énergie. A ce jour, 20% de la production d'électricité sont dédiés à l'éclairage. Dès lors, dans un contexte où la demande en énergie va croissante en relation avec une population mondiale toujours plus importante, la découverte de nouvelles sources lumineuses s'avère être primordiale pour favoriser la diminution de la consommation d'énergie électrique, tout en respectant au maximum les nouveaux impératifs environnementaux via l'augmentation de la fiabilité des dispositifs, leur temps de vie et l'innocuité des produits commercialisés. Seul un nombre très restreint de matériaux luminescents peut aujourd'hui répondre aux exigences précitées. Pourtant les dispositifs à base de diodes électroluminescentes sont appelés à remplacer les sources d'éclairages classiques à court terme. Cette thèse a pour objectif l'élaboration de luminophores blancs excitables dans l'UV. Notre attention s'est portée sur l'étude d'aluminosilicates de formulation MAl2Si2O8 (M = Ca, Sr, Ba) dopés avec des ions Eu2+, Eu3+, Ce3+ et Mn2+ cations qui jouent le rôle d'activateur, de sensibilisateur ou de sensibilisateur et d'activateur. Le transfert d'énergie du cérium vers le manganèse a été mis en évidence et permet l'obtention d'une couleur plus chaude qu'avec la phase au cérium seul. Par ailleurs, la possibilité de stabiliser de façon concomitante des ions Eu2+ et Eu3+ dans le réseau hôte au travers de synthèse à l'air est démontrée, la concentration en Eu2+ pouvant être partiellement contrôlée au travers d'un choix approprié d'un co-dopant.To address issues of global warming, promotion of energy-saving actions has become an urgent duty. Nowadays, approximately 20% of global electricity consumption is used for illumination only. In a context where the ever-increasing energy demand is coupled with a regular population growth, it is of prime importance to discover new light sources that could offer benefits in terms of electrical energy consumption, luminous efficiency, but also maintenance, reliability, lifetime, environmental protection, etc. So far only a very limited number of phosphors can fulfil the requirements for white-light LED applications, i.e. a high quantum yield, a high colour quality, a long stability. Hence, white light emitting diodes receive a strong incentive with the expectation to replace conventional and fluorescent lamps for general lighting applications in the near future. This thesis aims exclusively at the development of a next generation of LED sources based on the association of a near UV-LED chip with an innovative inorganic single phase white emitting phosphor. We will focus our attention on the optical properties of (co)doped MAl2Si2O8 phosphors (M= Ca, Sr, Ba) where Eu2+, Eu3+, Ce3+ and Mn2+ cations can play the role of activator, sensitizer, or both sensitizer and activator. In particular, we evidence that Mn2+ cations can be pumped via energy transfers to give rise to a warmer light compared to Ce only based materials, while Eu2+ and Eu3+ can be stabilized naturally in MAl2Si2O8 host lattices when prepared in air with a partial control of the Eu2+ concentration via the use of appropriate codopants.NANTES-BU Sciences (441092104) / SudocSudocFranceF
Reliability Evaluation of Smart Substation Based on Time-Varying Probabilistic Hybrid Attack Graph
A substation is the portion of a power grid that forms a link between the cyber system and the physical system. Reliability evaluation of smart substations based on a time-varying probabilistic hybrid attack graph (TVPHAG) is studied in this paper. First, the topology network of the smart substation is established, whose attributes are represented by probability. Then, in order to solve the problem of asynchrony in the cyber-physical system and the hybrid caused by heterogeneity, time-varying state equation in topology and cuts in algebra are introduced to TVPHAG. Based on TVPHAG, the evaluation of the reliability of cyber-physical systems with multiple equipment and multiple timescales is established. On this basis, the influences of physical conditions, cyberattacks, physical attacks, and cyber-physical attacks on substations are analyzed, respectively. Finally, the simulation shows that the method is effective in evaluating the reliability of smart substations, providing a new method for the evaluation of reliability
Characterization and phylogenetic analysis of the complete chloroplast genome of Tulipa patens (Liliaceae)
The chloroplast genome and evolutionary relationship analysis of Tulipa patens could provide fundamental genetic reference for its molecular breeding and biological research. The complete chloroplast genome of T. patens was sequenced and reported here. The genome was 152,050 bp in length, containing a pair of inverted repeated regions (26,330 bp) which were separated by a large single copy region of 82,184 bp, and a small single copy region of 17,206 bp. A total of 133 functional genes were annotated, including 87 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The phylogenetic relationships of 10 species indicated that T. patens was closely related to Tulipa sylvestris
Microstructural evolution of Al2O3-ZrO2 (Y2O3) powder de-agglomerated by sodium hydroxide solution soaking
Al2O3-ZrO2 (Y2O3) AZY nano-composite powder with a microstructure of zirconia grains buried in amorphous alumina was prepared by a novel co-precipitation method. Hard agglomerates in the powder can be easily broken down as a result of the amorphous alumina on the surface of primary particles, which is soluble in NaOH solution. 98.9% relative density was reached at 1300 degrees C, and grain abnormal growth emerged accompany with density decrease at 1550 degrees C for the de-agglomerated AZY composite powder. A small amount of sodium impurity residual in NaOH solution treated powder developed a dense microstructure with alumina grain in platelet shape at 1300 degrees C. The morphology and size of alumina platelet did not change much with the sintering temperature increasing. (C) 2015 Elsevier B.V. All rights reserved