15 research outputs found

    Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010.

    Get PDF
    Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 10(6 )km(2). The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests

    RenderMe-360: A Large Digital Asset Library and Benchmarks Towards High-fidelity Head Avatars

    Full text link
    Synthesizing high-fidelity head avatars is a central problem for computer vision and graphics. While head avatar synthesis algorithms have advanced rapidly, the best ones still face great obstacles in real-world scenarios. One of the vital causes is inadequate datasets -- 1) current public datasets can only support researchers to explore high-fidelity head avatars in one or two task directions; 2) these datasets usually contain digital head assets with limited data volume, and narrow distribution over different attributes. In this paper, we present RenderMe-360, a comprehensive 4D human head dataset to drive advance in head avatar research. It contains massive data assets, with 243+ million complete head frames, and over 800k video sequences from 500 different identities captured by synchronized multi-view cameras at 30 FPS. It is a large-scale digital library for head avatars with three key attributes: 1) High Fidelity: all subjects are captured by 60 synchronized, high-resolution 2K cameras in 360 degrees. 2) High Diversity: The collected subjects vary from different ages, eras, ethnicities, and cultures, providing abundant materials with distinctive styles in appearance and geometry. Moreover, each subject is asked to perform various motions, such as expressions and head rotations, which further extend the richness of assets. 3) Rich Annotations: we provide annotations with different granularities: cameras' parameters, matting, scan, 2D/3D facial landmarks, FLAME fitting, and text description. Based on the dataset, we build a comprehensive benchmark for head avatar research, with 16 state-of-the-art methods performed on five main tasks: novel view synthesis, novel expression synthesis, hair rendering, hair editing, and talking head generation. Our experiments uncover the strengths and weaknesses of current methods. RenderMe-360 opens the door for future exploration in head avatars.Comment: Technical Report; Project Page: 36; Github Link: https://github.com/RenderMe-360/RenderMe-36

    Arrhythmia Classification and Diagnosis Based on ECG Signal: A Multi-Domain Collaborative Analysis and Decision Approach

    No full text
    Electrocardiogram (ECG) signal plays a key role in the diagnosis of arrhythmia, which will pose a great threat to human health. As an effective feature extraction method, deep learning has shown excellent results in processing ECG signals. However, most of these methods neglect the cooperation between the multi-lead ECG series correlation and intra-series temporal patterns. In this work, a multi-domain collaborative analysis and decision approach is proposed, which makes the classification and diagnosis of arrhythmia more accurate. With this decision, we can realize the transition from the spatial domain to the spectral domain, and from the time domain to the frequency domain, and make it possible that ECG signals can be more clearly detected by convolution and sequential learning modules. Moreover, instead of the prior method, the self-attention mechanism is used to learn the relation matrix between the sequences automatically in this paper. We conduct extensive experiments on eight advanced models in the same field to demonstrate the effectiveness of our method

    Long-Term Dynamic of Poyang Lake Surface Water: A Mapping Work Based on the Google Earth Engine Cloud Platform

    No full text
    In recent years, the shrinkage of Poyang Lake, the largest freshwater lake in China, has raised concerns for society. The regulation of the Three Gorges Dam (TGD) has been argued to be a cause of the depletion of the lake by previous studies. However, over the past few decades, the lake’s surface water dynamic has remained poorly characterized, especially before the regulation of the TGD (2003). By calculating the inundation frequency with an index- and pixel-based water detection algorithm on Google Earth Engine (GEE), this study explored the spatial–temporal variation of the lake during 1988–2016 and compared the differences in Poyang Lake’s water body between the pre- and post-TGD periods. The year-long water body area of the lake has shown a significant decreasing trend over the past 29 years and has shifted to a smaller regime since 2006. The inundation frequency of the lake has also generally decreased since 2003, particularly at the central part of the lake, and the effects of this trend have been most severe in the spring and autumn seasons. The lake’s area has shown significant correlation with the precipitation of the Poyang Lake Basin on an inner-annual scale. The drivers of and relevant factors relating to the inter-annual variation of the lake’s surface water should be further investigated in the future

    An Innovative Digestion Method: Ultrasound-Assisted Electrochemical Oxidation for the Onsite Extraction of Heavy Metal Elements in Dairy Farm Slurry

    No full text
    Dairy farm slurry is an important biomass resource that can be used as a fertilizer and in energy utilization and chemical production. This study aimed to establish an innovative ultrasound-assisted electrochemical oxidation (UAEO) digestion method for the rapid and onsite analysis of the heavy metal (HM) contamination level of dairy slurry. The effects of UAEO operating parameters on digestion efficiency were tested based on Cu and Zn concentrations in a dairy slurry sample. The results showed that Cu and Zn digestion efficiency was (96.8 ± 2.6) and (98.5 ± 2.9)%, respectively, with the optimal UAEO operating parameters (digestion time: 45 min; ultrasonic power: 400 W; NaCl concentration: 10 g/L). The digestion recovery rate experiments were then operated with spiked samples to verify the digestion effect on broad-spectrum HMs. When the digestion time reached 45 min, all digestion recovery rates exceeded 90%. Meanwhile, free chlorine concentration, particle size distribution, and micromorphology were investigated to demonstrate the digestion mechanism. It was found that 414 mg/L free chorine had theoretically enough oxidative ability, and the ultrasound intervention could deal with the blocky undissolved particles attributed to its crushing capacity. The results of particle size distribution showed that the total volume and bulky particle proportion had an obvious decline. The micromorphology demonstrated that the ultrasound intervention fragmented the bulky particles, and electrochemical oxidation made irregular blocky structures form arc edge and cellular structures. The aforementioned results indicated that UAEO was a novel and efficient method. It was fast and convenient. Additionally, it ensured digestion efficiency and thus had a good application prospect
    corecore