40 research outputs found

    Targeting the MYC Ubiquitination-Proteasome Degradation Pathway for Cancer Therapy

    Get PDF
    Deregulated MYC overexpression and activation contributes to tumor growth and progression. Given the short half-life and unstable nature of the MYC protein, it is not surprising that the oncoprotein is highly regulated via diverse posttranslational mechanisms. Among them, ubiquitination dynamically controls the levels and activity of MYC during normal cell growth and homeostasis, whereas the disturbance of the ubiquitination/deubiquitination balance enables unwanted MYC stabilization and activation. In addition, MYC is also regulated by SUMOylation which crosstalks with the ubiquitination pathway and controls MYC protein stability and activity. In this mini-review, we will summarize current updates regarding MYC ubiquitination and provide perspectives about these MYC regulators as potential therapeutic targets in cancer

    Introduction of human erythropoietin receptor complementary DNA by retrovirus-mediated gene transfer into murine embryonic stem cells enhances erythropoiesis in developing embryoid bodies

    Get PDF
    To evaluate the role of the erythropoietin (Epo) receptor (R) in erythropoiesis in more primitive stem cells, we assessed the influence of retrovirus-mediated gene transfer of human (h) EpoR complementary DNA (cDNA) into murine embryonic stem (ES) cells on erythroid differentiation of these cells. The hEpoR cDNA was efficiently transduced into ES cells, forming hEpoR that stably expressed ES (ES-hEpoR) cells. Expression of hEpoR cDNA was confirmed in ES-hEpoR cells by reverse transcriptase-polymerase chain reaction and Northern blot analysis. Colony assays demonstrated that definitive erythroid and primitive erythroid colonies were significantly increased from ES-hEpoR cells, when compared with mock virus-transduced ES (ES-Neo) cells, during the time course of differentiation induced by withdrawal of leukemia inhibitory factor, in either the presence or the absence of Epo. Multipotential colony-forming units (CFU-Mix) were also increased in ES-hEpoR cells at different stages of differentiation, but no changes were detected for CFU-granulocyte-macrophage colonies (CFU-GM). Time course studies by Northern blot analysis demonstrated elevated levels of expression of beta-H1 and beta-Major globin genes in embryoid bodies derived from ES-hEpoR cells stimulated with Epo, when compared with similar expression from ES-Neo cells. Expression of the GATA-1 gene was enhanced in ES-hEpoR cells, when compared with ES-Neo cells, beginning immediately after initiation of the cultures until 8 days of differentiation. These data indicate that primitive and definitive erythropoiesis in differentiating embryoid bodies can be enhanced by retrovirus-mediated gene transfer of an hEpoR gene. Biol Blood Marrow Transplant 2000;6(4):395-407

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Aberrant Expression of Nucleostemin Activates p53 and Induces Cell Cycle Arrest via Inhibition of MDM2▿ †

    No full text
    The nucleolar protein nucleostemin (NS) is essential for cell proliferation and early embryogenesis. Both depletion and overexpression of NS reduce cell proliferation. However, the mechanisms underlying this regulation are still unclear. Here, we show that NS regulates p53 activity through the inhibition of MDM2. NS binds to the central acidic domain of MDM2 and inhibits MDM2-mediated p53 ubiquitylation and degradation. Consequently, ectopic overexpression of NS activates p53, induces G1 cell cycle arrest, and inhibits cell proliferation. Interestingly, the knockdown of NS by small interfering RNA also activates p53 and induces G1 arrest. These effects require the ribosomal proteins L5 and L11, since the depletion of NS enhanced their interactions with MDM2 and the knockdown of L5 or L11 abrogated the NS depletion-induced p53 activation and cell cycle arrest. These results suggest that a p53-dependent cell cycle checkpoint monitors changes of cellular NS levels via the impediment of MDM2 function

    Ribosomal Protein L11 Associates with c-Myc at 5 S rRNA and tRNA Genes and Regulates Their Expression*

    No full text
    The c-Myc oncoprotein promotes cell growth by enhancing ribosomal biogenesis. Overexpression of c-Myc and aberrant ribosomal biogenesis lead to deregulated cell growth and tumorigenesis. Hence, c-Myc activity and ribosomal biogenesis must be tightly coordinated during normal homeostasis. We previously found that ribosomal protein L11 inhibits c-Myc activity by blocking the recruitment of its co-activator transformation/transcription domain-associated protein (TRRAP) to the promoter regions of c-Myc target genes that are transcribed by RNA polymerases I and II. In this study, we extended the role of L11 to the regulation of c-Myc-driven transcription of the 5 S rRNA and tRNA genes by RNA polymerase III. L11 co-resided with c-Myc at the 5 S rRNA and tRNA genes and significantly inhibited the binding of TRRAP to these genes. Knocking down endogenous L11 enhanced c-Myc-dependent transcription of these genes. Interestingly, in response to ribosomal stress induced by the treatment of cells with a low dose of actinomycin D or serum starvation, L11 binding to these genes was increased, and inversely TRRAP binding to these genes was decreased. Consistently, knockdown of L11 rescued the reduction of the expression of these genes by the two treatments. These results demonstrate that L11 suppresses c-Myc-dependent and RNA polymerase III-catalyzed transcription of 5 S rRNA and tRNA genes in response to ribosomal stress, ensuring a tight coordination between c-Myc activity and ribosomal biogenesis

    Balance of Yin and Yang: Ubiquitylation-Mediated Regulation of p53 and c-Myc,

    Get PDF
    Protein ubiquitylation has been demonstrated to play a vital role not only in mediating protein turnover but also in modulating protein activity. The stability and activity of the tumor suppressor p53 and of the oncoprotein c-Myc are no exception. Both are regulated through independent ubiquitylation by several E3 ubiquitin ligases. Interestingly, p53 and c-Myc are functionally connected by some of these E3 enzymes and their regulator ARF, although these proteins play opposite roles in controlling cell growth and proliferation. The balance of this complex ubiquitylation network and its disruption during oncogenesis will be the topics of this review

    SSRP1 functions as a co-activator of the transcriptional activator p63

    No full text
    The p53 homolog p63 is a transcriptional activator. Here, we describe the identification of an HMG1-like protein SSRP1 as a co-activator of p63. Over expression of wild-type, but not deletion mutant, SSRP1 remarkably enhanced p63γ-dependent luciferase activity, G(1) arrest, apoptosis and expression of endogenous PIG3, p21(Waf1/cip1) and MDM2 in human p53-deficient lung carcinoma H1299 cells and mouse embryonic fibroblasts. Also, SSRP1 interacted to p63γ in vitro and in cells, and resided with p63γ at the p53-responsive DNA element sites of the cellular endogenous MDM2 and p21(Waf1/cip1) promoters. Moreover, N-terminus-deleted p63 (ΔN-p63) bound to neither SSRP1 nor its central domain in vitro. Accordingly, SSRP1 was unable to stimulate ΔN-p63-mediated residual luciferase activity and apoptosis in cells. Finally, the ectopic expression of the central p63-binding domain of SSRP1 inhibited p63-dependent transcription in cells. Thus, these results suggest that SSRP1 stimulates p63 activity by associating with this activator at the promoter
    corecore