35,007 research outputs found
A Note on Positive Energy Theorem for Spaces with Asymptotic SUSY Compactification
We extend the positive mass theorem proved previously by the author to the
Lorentzian setting. This includes the original higher dimensional positive
energy theorem whose spinor proof was given by Witten in dimension four and by
Xiao Zhang in dimension five
On data skewness, stragglers, and MapReduce progress indicators
We tackle the problem of predicting the performance of MapReduce
applications, designing accurate progress indicators that keep programmers
informed on the percentage of completed computation time during the execution
of a job. Through extensive experiments, we show that state-of-the-art progress
indicators (including the one provided by Hadoop) can be seriously harmed by
data skewness, load unbalancing, and straggling tasks. This is mainly due to
their implicit assumption that the running time depends linearly on the input
size. We thus design a novel profile-guided progress indicator, called
NearestFit, that operates without the linear hypothesis assumption and exploits
a careful combination of nearest neighbor regression and statistical curve
fitting techniques. Our theoretical progress model requires fine-grained
profile data, that can be very difficult to manage in practice. To overcome
this issue, we resort to computing accurate approximations for some of the
quantities used in our model through space- and time-efficient data streaming
algorithms. We implemented NearestFit on top of Hadoop 2.6.0. An extensive
empirical assessment over the Amazon EC2 platform on a variety of real-world
benchmarks shows that NearestFit is practical w.r.t. space and time overheads
and that its accuracy is generally very good, even in scenarios where
competitors incur non-negligible errors and wide prediction fluctuations.
Overall, NearestFit significantly improves the current state-of-art on progress
analysis for MapReduce
An HMM-based Comparative Genomic Framework for Detecting Introgression in Eukaryotes
One outcome of interspecific hybridization and subsequent effects of
evolutionary forces is introgression, which is the integration of genetic
material from one species into the genome of an individual in another species.
The evolution of several groups of eukaryotic species has involved
hybridization, and cases of adaptation through introgression have been already
established. In this work, we report on a new comparative genomic framework for
detecting introgression in genomes, called PhyloNet-HMM, which combines
phylogenetic networks, that capture reticulate evolutionary relationships among
genomes, with hidden Markov models (HMMs), that capture dependencies within
genomes. A novel aspect of our work is that it also accounts for incomplete
lineage sorting and dependence across loci.
Application of our model to variation data from chromosome 7 in the mouse
(Mus musculus domesticus) genome detects a recently reported adaptive
introgression event involving the rodent poison resistance gene Vkorc1, in
addition to other newly detected introgression regions. Based on our analysis,
it is estimated that about 12% of all sites withinchromosome 7 are of
introgressive origin (these cover about 18 Mbp of chromosome 7, and over 300
genes). Further, our model detects no introgression in two negative control
data sets. Our work provides a powerful framework for systematic analysis of
introgression while simultaneously accounting for dependence across sites,
point mutations, recombination, and ancestral polymorphism
- …