One outcome of interspecific hybridization and subsequent effects of
evolutionary forces is introgression, which is the integration of genetic
material from one species into the genome of an individual in another species.
The evolution of several groups of eukaryotic species has involved
hybridization, and cases of adaptation through introgression have been already
established. In this work, we report on a new comparative genomic framework for
detecting introgression in genomes, called PhyloNet-HMM, which combines
phylogenetic networks, that capture reticulate evolutionary relationships among
genomes, with hidden Markov models (HMMs), that capture dependencies within
genomes. A novel aspect of our work is that it also accounts for incomplete
lineage sorting and dependence across loci.
Application of our model to variation data from chromosome 7 in the mouse
(Mus musculus domesticus) genome detects a recently reported adaptive
introgression event involving the rodent poison resistance gene Vkorc1, in
addition to other newly detected introgression regions. Based on our analysis,
it is estimated that about 12% of all sites withinchromosome 7 are of
introgressive origin (these cover about 18 Mbp of chromosome 7, and over 300
genes). Further, our model detects no introgression in two negative control
data sets. Our work provides a powerful framework for systematic analysis of
introgression while simultaneously accounting for dependence across sites,
point mutations, recombination, and ancestral polymorphism