17,360 research outputs found

    Electromagnetic radiation of baryons containing two heavy quarks

    Get PDF
    The two heavy quarks in a baryon which contains two heavy quarks and a light one, can constitute a scalar or axial vector diquark. We study electromagnetic radiations of such baryons, (i) \Xi_{(bc)_1} -> \Xi_{(bc)_0}+\gamma, (ii) \Xi_{(bc)_1}^* -> \Xi_{(bc)_0}+\gamma, (iii) \Xi_{(bc)_0}^{**}(1/2, l=1) -> \Xi_{(bc)_0}+\gamma, (iv) \Xi_{(bc)_0}^{**}(3/2, l=1) -> \Xi_{(bc)_0}+\gamma and (v) \Xi_{(bc)_0}^{**}(3/2, l=2) -> \Xi_{(bc)_0}+\gamma, where \Xi_{(bc)_{0(1)}}, \Xi^*_{(bc)_1} are S-wave bound states of a heavy scalar or axial vector diquark and a light quark, and \Xi_{(bc)_0}^{**}(l is bigger than 1) are P- or D-wave bound states of a heavy scalar diquark and a light quark. Analysis indicates that these processes can be attributed into two categories and the physical mechanisms which are responsible for them are completely distinct. Measurements can provide a good judgment for the diquark structure and better understanding of the physical picture.Comment: 15 pages, Late

    On converse bounds for classical communication over quantum channels

    Full text link
    We explore several new converse bounds for classical communication over quantum channels in both the one-shot and asymptotic regimes. First, we show that the Matthews-Wehner meta-converse bound for entanglement-assisted classical communication can be achieved by activated, no-signalling assisted codes, suitably generalizing a result for classical channels. Second, we derive a new efficiently computable meta-converse on the amount of classical information unassisted codes can transmit over a single use of a quantum channel. As applications, we provide a finite resource analysis of classical communication over quantum erasure channels, including the second-order and moderate deviation asymptotics. Third, we explore the asymptotic analogue of our new meta-converse, the Υ\Upsilon-information of the channel. We show that its regularization is an upper bound on the classical capacity, which is generally tighter than the entanglement-assisted capacity and other known efficiently computable strong converse bounds. For covariant channels we show that the Υ\Upsilon-information is a strong converse bound.Comment: v3: published version; v2: 18 pages, presentation and results improve

    Magnetic Proximity Effect and Interlayer Exchange Coupling of Ferromagnetic/Topological Insulator/Ferromagnetic Trilayer

    Get PDF
    Magnetic proximity effect between topological insulator (TI) and ferromagnetic insulator (FMI) is considered to have great potential in spintronics. However, a complete determination of interfacial magnetic structure has been highly challenging. We theoretically investigate the interlayer exchange coupling of two FMIs separated by a TI thin film, and show that the particular electronic states of the TI contributing to the proximity effect can be directly identified through the coupling behavior between two FMIs, together with a tunability of coupling constant. Such FMI/TI/FMI structure not only serves as a platform to clarify the magnetic structure of FMI/TI interface, but also provides insights into designing the magnetic storage devices with ultrafast response.Comment: 7 pages, 4 figure

    Understanding the white-light flare on 2012 March 9 : Evidence of a two-step magnetic reconnection

    Full text link
    We attempt to understand the white-light flare (WLF) that was observed on 2012 March 9 with a newly constructed multi-wavelength solar telescope called the Optical and Near-infrared Solar Eruption Tracer (ONSET). We analyzed WLF observations in radio, H-alpha, white-light, ultraviolet, and X-ray bands. We also studied the magnetic configuration of the flare via the nonlinear force-free field (NLFFF) extrapolation and the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Continuum emission enhancement clearly appeared at the 3600 angstrom and 4250 angstrom bands, with peak contrasts of 25% and 12%, respectively. The continuum emission enhancement closely coincided with the impulsive increase in the hard X-ray emission and a microwave type III burst at 03:40 UT. We find that the WLF appeared at one end of either the sheared or twisted field lines or both. There was also a long-lasting phase in the H-alpha and soft X-ray bands after the white-light emission peak. In particular, a second, yet stronger, peak appeared at 03:56 UT in the microwave band. This event shows clear evidence that the white-light emission was caused by energetic particles bombarding the lower solar atmosphere. A two-step magnetic reconnection scenario is proposed to explain the entire process of flare evolution, i.e., the first-step magnetic reconnection between the field lines that are highly sheared or twisted or both, and the second-step one in the current sheet, which is stretched by the erupting flux rope. The WLF is supposed to be triggered in the first-step magnetic reconnection at a relatively low altitude.Comment: 4 pages, 4 figures, published in A&A Lette

    Nonlinear fatigue damage of cracked cement paste after grouting enhancement

    Get PDF
    Grouting reinforcement is an important part of modern engineering and has grown in popularity due to the benefits of grouting enhancement on cyclic loading. Understanding the fatigue mechanism of grouting-enhanced structures is vital to the design and the long-term stability analysis of such structures. In this study, the fatigue mechanical properties of cracked cement paste after epoxy resin grouting enhancement under different cyclic conditions were investigated in the laboratory and an inverted S-shaped curve was proposed to describe the damage accumulation. The test results indicated that the fatigue axial deformation can be divided into three stages: the initial stage, constant velocity stage and accelerating stage. The irreversible deformation can be used to describe the damage accumulation. The fatigue process is significantly affected by the upper limit stress level and the stress amplitude. In addition, the exponential relationship between stress amplitude and fatigue life was obtained. The proposed S-shaped curve was validated by an experimental fatigue strain test. The tests result upon various load conditions and crack types represented a good agreement with the predicted data
    corecore