155 research outputs found
A novel multiobjective evolutionary algorithm based on regression analysis
As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m - 1)-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA) is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m - 1)-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper
Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers
A critical challenge in the fabrication of chalcogenide-glass infrared optical fibers is the need for first producing large volumes of high-purity glass-a formidable task, particularly in the case of multicomponent glasses. We describe here a procedure based on multimaterial coextrusion of a hybrid glass-polymer preform from which extended lengths of robust infrared fibers are readily drawn. Only similar to 2 g of glass is required to produce 46 m of step-index fiber with core diameters in the range 10-18 mu m. This process enables rapid prototyping of a variety of glasses for applications in the delivery of quantum cascade laser light, spectroscopy, sensing, and astronomy
Memetic Differential Evolution with an Improved Contraction Criterion
Memetic algorithms with an appropriate trade-off between the exploration and exploitation can obtain very good results in continuous optimization. In this paper, we present an improved memetic differential evolution algorithm for solving global optimization problems. The proposed approach, called memetic DE (MDE), hybridizes differential evolution (DE) with a local search (LS) operator and periodic reinitialization to balance the exploration and exploitation. A new contraction criterion, which is based on the improved maximum distance in objective space, is proposed to decide when the local search starts. The proposed algorithm is compared with six well-known evolutionary algorithms on twenty-one benchmark functions, and the experimental results are analyzed with two kinds of nonparametric statistical tests. Moreover, sensitivity analyses for parameters in MDE are also made. Experimental results have demonstrated the competitive performance of the proposed method with respect to the six compared algorithms
Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths
International audienceThe optical properties of Ge–Sb–Se glasses have been extensively studied at telecom wavelengths in recent years. However, the understanding of nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths still remains limited. In this work, a series of Ge20SbxSe80−x (x = 0, 5, 10) glasses were prepared by conventional melt–quenching method. The absorption spectra and the refractive index of glasses were recorded. The third order nonlinearity, n2, and nonlinear absorption coefficient were measured for Ge–Sb–Se glass samples at the wavelengths of 1550, 2000 and 2500 nm by Z-scan technique, respectively. With the increasing of Sb contents, the linear refractive index of glass increased. Among the three operating wavelengths, all the three glass samples have a highest n2 at 2000 nm. By using the figure of merit (FOM) to evaluate the studied three glasses, the Ge20Sb10Se70 glass shows the greatest potential for mid-IR all optical switching device
Preparation of Low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications
International audienceGe15Ga10Te75 (GGT) glass shows good transparency between 2 and 25 μm wavelengths, good chemical and thermal stability to be drawn into fiber, which appears to be a good candidate for developing far-IR fiber-optics devices, although there are strong absorption peaks caused by impurities in the glass. With the aim of decreasing the content of impurities and micro-crystal particles in prepared \GGT\ glass samples, a rapid heating furnace and the fast distillation method based on vapor evaporation plus deposition under vacuum condition was adopted. Properties measurements including Differential Scanning Calorimeter (DSC), Vis-NIR and \IR\ transmitting spectra were performed on the prepared glass samples. Dependence of optical loss on the types of oxygenic getters and their contents and glass quenching temperature was also studied. All these results show that the average optical losses of distilled glass samples were greatly improved by the designated purification processes. Besides, the quality of the glass samples can be improved with the optimized quenching temperature. In all, the optical loss of the glass can be reduced effectively. Minimum optical losses of 0.042 dB/mm at 9 μm and 0.037 dB/mm at 12 μm are obtained after a right purification process, which are the lowest loss of the \GGT\ chalcogenide glass nowadays
Multiple Gravity Assist Spacecraft Trajectories Design Based on BFS and EP_DE Algorithm
The paper deals with the multiple gravity assist trajectories design. In order to improve the performance of the heuristic algorithms, such as differential evolution algorithm, in multiple gravity assist trajectories design optimization, a method combining BFS (breadth-first search) and EP DE (differential evolution algorithm based on search space exploring and principal component analysis) is proposed. In this method, firstly find the possible multiple gravity assist planet sequences with pruning based BFS and use standard differential evolution algorithm to judge the possibility of all the possible trajectories. Then select the better ones from all the possible solutions. Finally, use EP DE which will be introduced in this paper to find an optimal decision vector of spacecraft transfer time schedule (launch window and transfer duration) for each selected planet sequence. In this paper, several cases are presented to prove the efficiency of the method proposed
Freely adjusted properties in Ge–S based chalcogenide glasses with iodine incorporation
International audienceIn this study, we examined the function of halogen iodine acting as a glass network modifier in green chalcogenide glasses based on the Ge–S system. We obtained a series of Ge–S–I glasses and determined their glass-forming region. We then recorded the physical, thermal, and optical properties and studied the effect of halogen iodine on Ge–S–I glasses. Results show that these glasses have relatively wide optical transmission window for infrared (IR) applications. The softening temperature of Ge–S–I glasses varies from 210.54 °C to 321.63 °C, this temperature fits well with some kinds of high-temperature polymers, such as PES and PEI, the polymers serve as protective layers with high strength and flexibility, thus simplifying the fabrication processes of IR chalcogenide glass fiber. Finally, we performed a purification process to eliminate impurities and to improve optical spectr
- …