18 research outputs found

    Health and disease markers correlate with gut microbiome composition across thousands of people.

    Get PDF
    Variation in the human gut microbiome can reflect host lifestyle and behaviors and influence disease biomarker levels in the blood. Understanding the relationships between gut microbes and host phenotypes are critical for understanding wellness and disease. Here, we examine associations between the gut microbiota and ~150 host phenotypic features across ~3,400 individuals. We identify major axes of taxonomic variance in the gut and a putative diversity maximum along the Firmicutes-to-Bacteroidetes axis. Our analyses reveal both known and unknown associations between microbiome composition and host clinical markers and lifestyle factors, including host-microbe associations that are composition-specific. These results suggest potential opportunities for targeted interventions that alter the composition of the microbiome to improve host health. By uncovering the interrelationships between host diet and lifestyle factors, clinical blood markers, and the human gut microbiome at the population-scale, our results serve as a roadmap for future studies on host-microbe interactions and interventions

    Microbe-seq : high-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome

    Get PDF
    We present Microbe-seq , a high-throughput single-microbe method that yields strain-resolved genomes from complex microbial communities. We encapsulate individual microbes into droplets with microfluidics and liberate their DNA, which we amplify, tag with droplet-specific barcodes, and sequence. We use Microbe-seq to explore the human gut microbiome; we collect stool samples from a single individual, sequence over 20,000 microbes, and reconstruct nearly-complete genomes of almost 100 bacterial species, including several with multiple subspecies strains. We use these genomes to probe genomic signatures of microbial interactions: we reconstruct the horizontal gene transfer (HGT) network within the individual and observe far greater exchange within the same bacterial phylum than between different phyla. We probe bacteria-virus interactions; unexpectedly, we identify a significant in vivo association between crAssphage, an abundant bacteriophage, and a single strain of Bacteroides vulgatus. Microbe-seq contributes high-throughput culture-free capabilities to investigate genomic blueprints of complex microbial communities with single-microbe resolution

    Multi-site sampling and risk prioritization of antibiotic resistance genes in sewage environments

    No full text
    This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 43-46).The spread of antibiotic resistance across human and environmental habitats is a global public health challenge. In this study, we investigate the public health relevance of antibiotic resistance found in wastewater by combining metagenomic sequencing of wastewater environments with risk prioritization of resistance genes. We find that many of the genes commonly found in wastewater are not readily present in humans. Ranking antibiotic resistance genes based on their potential pathogenicity and mobility reveals that most of the antibiotic resistance genes in wastewater are not directly clinically relevant. Residential sewage was found to be of greater risk to human health than wastewater treatment plants and can be as risky as hospital effluent. Across countries, we show that differences in antibiotic resistance can, in some cases, resemble differences in antibiotic drug consumption. Finally, we find that the flow of antibiotic resistance genes is influenced by geographical distance and environmental selection.by Chengzhen L. Dai.M. Eng.M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienc

    Genome-microbiome interplay provides insight into the determinants of the human blood metabolome.

    No full text
    Variation in the blood metabolome is intimately related to human health. However, few details are known about the interplay between genetics and the microbiome in explaining this variation on a metabolite-by-metabolite level. Here, we perform analyses of variance for each of 930 blood metabolites robustly detected across a cohort of 1,569 individuals with paired genomic and microbiome data while controlling for a number of relevant covariates. We find that 595 (64%) of these blood metabolites are significantly associated with either host genetics or the gut microbiome, with 69% of these associations driven solely by the microbiome, 15% driven solely by genetics and 16% under hybrid genome-microbiome control. Additionally, interaction effects, where a metabolite-microbe association is specific to a particular genetic background, are quite common, albeit with modest effect sizes. This knowledge will help to guide targeted interventions designed to alter the composition of the human blood metabolome

    Health and disease markers correlate with gut microbiome composition across thousands of people

    No full text
    Variation in the gut microbiome can reflect host lifestyle, behaviour, and influence blood-based biomarkers. Here the authors examine associations between the microbiota and 150 host phenotypic features in a large cohort of >3,000 individuals

    Characteristics and Factors Associated with COVID-19 Infection, Hospitalization, and Mortality Across Race and Ethnicity.

    No full text
    BACKGROUND: Data on the characteristics of COVID-19 patients disaggregated by race/ethnicity remain limited. We evaluated the sociodemographic and clinical characteristics of patients across racial/ethnic groups and assessed their associations with COVID-19 outcomes. METHODS: This retrospective cohort study examined 629,953 patients tested for SARS-CoV-2 in a large health system spanning California, Oregon, and Washington between March 1 and December 31, 2020. Sociodemographic and clinical characteristics were obtained from electronic health records. Odds of SARS-CoV-2 infection, COVID-19 hospitalization, and in-hospital death were assessed with multivariate logistic regression. RESULTS: 570,298 patients with known race/ethnicity were tested for SARS-CoV-2, of whom 27.8% were non-White minorities. 54,645 individuals tested positive, with minorities representing 50.1%. Hispanics represented 34.3% of infections but only 13.4% of tests. While generally younger than White patients, Hispanics had higher rates of diabetes but fewer other comorbidities. 8,536 patients were hospitalized and 1,246 died, of whom 56.1% and 54.4% were non-White, respectively. Racial/ethnic distributions of outcomes across the health system tracked with state-level statistics. Increased odds of testing positive and hospitalization were associated with all minority races/ethnicities. Hispanic patients also exhibited increased morbidity, and Hispanic race/ethnicity was associated with in-hospital mortality (OR: 1.39 [95% CI: 1.14-1.70]). CONCLUSION: Major healthcare disparities were evident, especially among Hispanics who tested positive at a higher rate, required excess hospitalization and mechanical ventilation, and had higher odds of in-hospital mortality despite younger age. Targeted, culturally-responsive interventions and equitable vaccine development and distribution are needed to address the increased risk of poorer COVID-19 outcomes among minority populations

    An omics-based framework for assessing the health risk of antimicrobial resistance genes

    No full text
    Antibiotic resistance genes (ARGs) are widespread among bacteria. However, not all ARGs pose serious threats to public health, highlighting the importance of identifying those that are high-risk. Here, we developed an ‘omics-based’ framework to evaluate ARG risk considering human-associated-enrichment, gene mobility, and host pathogenicity. Our framework classifies human-associated, mobile ARGs (3.6% of all ARGs) as the highest risk, which we further differentiate as ‘current threats’ (Rank I; 3%) - already present among pathogens - and ‘future threats’ (Rank II; 0.6%) - novel resistance emerging from non-pathogens. Our framework identified 73 ‘current threat’ ARG families. Of these, 35 were among the 37 high-risk ARGs proposed by the World Health Organization and other literature; the remaining 38 were significantly enriched in hospital plasmids. By evaluating all pathogen genomes released since framework construction, we confirmed that ARGs that recently transferred into pathogens were significantly enriched in Rank II (‘future threats’). Lastly, we applied the framework to gut microbiome genomes from fecal microbiota transplantation donors. We found that although ARGs were widespread (73% of genomes), only 8.9% of genomes contained high-risk ARGs. Our framework provides an easy-to-implement approach to identify current and future antimicrobial resistance threats, with potential clinical applications including reducing risk of microbiome-based interventions.BT/Environmental Biotechnolog

    An omics-based framework for assessing the health risk of antimicrobial resistance genes

    No full text
    AbstractAntibiotic resistance genes (ARGs) are widespread among bacteria. However, not all ARGs pose serious threats to public health, highlighting the importance of identifying those that are high-risk. Here, we developed an ‘omics-based’ framework to evaluate ARG risk considering human-associated-enrichment, gene mobility, and host pathogenicity. Our framework classifies human-associated, mobile ARGs (3.6% of all ARGs) as the highest risk, which we further differentiate as ‘current threats’ (Rank I; 3%) - already present among pathogens - and ‘future threats’ (Rank II; 0.6%) - novel resistance emerging from non-pathogens. Our framework identified 73 ‘current threat’ ARG families. Of these, 35 were among the 37 high-risk ARGs proposed by the World Health Organization and other literature; the remaining 38 were significantly enriched in hospital plasmids. By evaluating all pathogen genomes released since framework construction, we confirmed that ARGs that recently transferred into pathogens were significantly enriched in Rank II (‘future threats’). Lastly, we applied the framework to gut microbiome genomes from fecal microbiota transplantation donors. We found that although ARGs were widespread (73% of genomes), only 8.9% of genomes contained high-risk ARGs. Our framework provides an easy-to-implement approach to identify current and future antimicrobial resistance threats, with potential clinical applications including reducing risk of microbiome-based interventions.</jats:p
    corecore