24 research outputs found

    Hematopoietic growth factor inducible neurokinin-1 (Gpnmb/Osteoactivin) is a biomarker of progressive renal injury across species

    Get PDF
    We sought to find a urinary biomarker for chronic kidney disease and tested hematopoietic growth factor inducible neurokinin-1 (HGFIN, also known as Gpnmb/Osteoactivin) as it was found to be a kidney injury biomarker in microarray studies. Here, we studied whether HGFIN is a marker of kidney disease progression. Its increase in kidney disease was confirmed by real-time PCR after 5/6 nephrectomy, in streptozotocin-induced diabetes, and in patients with chronic kidney disease. In the remnant kidney, HGFIN mRNA increased over time reflecting lesion chronicity. HGFIN was identified in the infarct portion of the remnant kidney in infiltrating hematopoietic interstitial cells, and in distal nephron tubules of the viable remnant kidney expressed de novo with increasing time. In vitro, it localized to cytoplasmic vesicles and cell membranes. Epithelial cells lining distal tubules and sloughed luminal tubule cells of patients expressed HGFIN protein. The urine HGFIN-to-creatinine ratio increased over time after 5/6 nephrectomy; increased in patients with proteinuric and polycystic kidney disease; and remained detectable in urine after prolonged freezer storage. The urine HGFIN-to-creatinine ratio compared favorably with the urine neutrophil gelatinase-associated lipocalin (NGAL)-to-creatinine ratio (both measured by commercial enzyme-linked immunosorbent assays (ELISAs)), and correlated strongly with proteinuria, but weakly with estimated glomerular filtration rate and serum creatinine. Thus, HGFIN may be a biomarker of progressive kidney disease

    Curcumin activates the p38MPAK-HSP25 pathway in vitro but fails to attenuate diabetic nephropathy in DBA2J mice despite urinary clearance documented by HPLC

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Curcumin has anti-inflammatory, anti-oxidant, and anti-proliferative properties, and depending upon the experimental circumstances, may be pro- or anti-apoptotic. Many of these biological actions could ameliorate diabetic nephropathy.</p> <p>Methods/Design</p> <p>Mouse podocytes, cultured in basal or high glucose conditions, underwent acute exposure to curcumin. Western blots for p38-MAPK, COX-2 and cleaved caspase-3; isoelectric focusing for HSP25 phosphorylation; and DNase I assays for F- to G- actin cleavage were performed for <it>in vitro </it>analyses. <it>In vivo </it>studies examined the effects of dietary curcumin on the development of diabetic nephropathy in streptozotocin (Stz)-induced diabetes in DBA2J mice. Urinary albumin to creatinine ratios were obtained, high performance liquid chromatography was performed for urinary curcuminoid measurements, and Western blots for p38-MAPK and total HSP25 were performed.</p> <p>Results</p> <p>Curcumin enhanced the phosphorylation of both p38MAPK and downstream HSP25; inhibited COX-2; induced a trend towards attenuation of F- to G-actin cleavage; and dramatically inhibited the activation of caspase-3 in <it>vitro</it>. In curcumin-treated DBA2J mice with Stz-diabetes, HPLC measurements confirmed the presence of urinary curcuminoid. Nevertheless, dietary provision of curcumin either before or after the induction of diabetes failed to attenuate albuminuria.</p> <p>Conclusions</p> <p>Apart from species, strain, early differences in glycemic control, and/or dosing effects, the failure to modulate albuminuria may have been due to a decrement in renal HSP25 or stimulation of the 12/15 lipoxygenase pathway in DBA2J mice fed curcumin. In addition, these studies suggest that timed urine collections may be useful for monitoring curcumin dosing and renal pharmacodynamic effects.</p

    Ethanol extract of Schisandrae chinensis fructus ameliorates the extent of experimentally induced atherosclerosis in rats by increasing antioxidant capacity and improving endothelial dysfunction

    No full text
    Context: Schisandrae chinensis fructus, the dried ripe fruit of Schisandra chinensis (Turcz.) Baill. (Magnoliaceae) has been used for thousands of years as a traditional Chinese herb, which can attenuate and prevent the development of cardiovascular events. Objective: To evaluate the effects of the ethanol extracts from Schisandrae chinensis fructus fruit (EESC) on experimental atherosclerosis (AS) in rats. Materials and methods: Treatment with EESC (0.35, 0.7, 1.4 g/kg/d, i.g.) and simvastatin (4 mg/kg/d, i.g.) on AS rats for 3 weeks. Sprague–Dawley rats on normal chow and under water treatment were used as control. The content of schisandrin, schisandrin A and schisandrin B in EESC was detected by HPLC. Aortic pathology changes, serum biochemical indices and nuclear factor E2-related factor 2 (Nrf-2) and heame oxygenase-1 (HO-1) expressions were measured. Results: Schisandrin, schisandrin A and schisandrin B contents were 291.8, 81.46 and 279.1 mg/g of dry weight, respectively. EESC significantly reduced the aortic plaque area (76.5, 90.5 and 73.9% reduction), regulated the levels of serum lipid (p  20 g/kg. Conclusions: EESC positively affects the treatment of AS in vivo and the findings will provide a reliable theoretical basis for developing novel therapeutics
    corecore