29 research outputs found

    Interfacial adhesion of laser clad functionally graded materials

    Get PDF
    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission gun environmental scanning electron microscopy reveal different failure modes of the FGMs and substrate. Mapping of strain fields using digital imaging correlation shows a gradual transition of deformation over the interface region and softening effects in the heat-affected zones of the FGM tracks. The strengthening of the FGM is dominated by the size of the Al halos around the particles, in accordance with a dislocation pile-up model.

    Sliding Wear Behavior of Al2O3-TiO2 Coatings Fabricated by the Suspension Plasma Spraying Technique

    Full text link
    [EN] The friction and dry sliding wear behavior of alumina and alumina-titania near-nanometric coatings were examined. Coatings were obtained by the suspension plasma spraying technique. Dry sliding wear tests were performed on a ball-on-disk tribometer, with an Al2O3 ball as counterpart material, a normal load of 2 N, a sliding distance of 1200 m and a sliding speed of 0.1 m/s. The effect of including TiO2 in the fabricated coatings on friction coefficient behavior, wear rates and wear damage patterns was determined. The addition of TiO2 to the coatings was found to greatly increase wear resistance by, for example, 2.6-fold for 40 wt% of TiO2. The analysis of the wear surface was correlated with microstructural parameters, mechanical properties and wear rates.The authors wish to thank for the Spanish Ministry of Economy and Competitiveness (MAT2012-38364-C03) and the Autonomous Government of Valencia for funding for the stay in SPCTS-UMR CNRS (France), and the French FCENANOSURF consortium funded by the French Ministry and Industry and local governments of Region Centre and Region Limousin.Klyatskina, E.; Espinosa Fernández, L.; Darut, G.; Segovia López, EF.; Salvador Moya, MD.; Montavon, G.; Agorges, H. (2015). Sliding Wear Behavior of Al2O3-TiO2 Coatings Fabricated by the Suspension Plasma Spraying Technique. Tribology Letters. 59(1):1-9. https://doi.org/10.1007/s11249-015-0530-5S19591Pawlowski, L.: The Science and Engineering of Thermal Spray Coatings. Wiley: Hoboken (2008)Lampe, Th, Eisenberg, S., Cabeo, E.R.: Plasma surface engineering in the automotive industry—trends and future prospective. Surf. Coat. Technol. 174–175, 1–7 (2003)Wang, Y., Jiang, S., Wang, M., Wang, S., Xiao, T.D., Strutt, P.R.: Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings. Wear 237, 176–185 (2000)Kabacoff, L.T.: Nanoceramic coatings exhibit much higher toughness and wear resistance than conventional coatings. AMPITAC Newslett. 6(1), 37–42 (2002)Wang, M., Shaw, L.L.: Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina–titania coatings. Surf. Coat. Technol. 202, 34–44 (2007)Shaw, L.L., Goberman, D., Ren, R., Gell, M., Jing, S., Wang, Y., Xiao, T.D., Strutt, P.R.: The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions. Surf. Coat. Technol. 130, 1–8 (2000)Dahotre, N.B., Nayak, S.: Nanocoatings for engine application. Surf. Coat. Technol. 194(1), 58–67 (2005)Sathish, S., Geetha, M., Aruna, S.T., Balaji, N., Rajam, K.S., Asokamani, R.: Sliding wear behavior of plasma sprayed nanoceramic coatings for biomedical applications. Wear 271, 934–941 (2011)Pawlowski, L.: Finely grained nanometric and submicrometric coatings by thermal sparing: a review. Surf. Coat. Technol. 202, 4318–4328 (2008)Xiao, D., Wang, Y., Strutt, P.: Fabrication and evaluation of plasma sprayed nanostructured alumina–titania coatings with superior properties. Mater. Sci. Eng. 301, 80–89 (2001)Tjong, S.C., Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng. 45, 1–88 (2004)Fauchais, P., Montavon, G., Bertrand, G.: From powders to thermally sprayed coatings. J. Therm. Spray Technol. 19, 56–80 (2010)Lima, R.S., Marple, B.R.: Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J. Therm. Spray Technol. 16, 40–63 (2007)Fauchais, P., Etchart-Salas, R., Delbos, C., Tognonvi, M., Rat, V., Coudert, J.F., Chartier, T.: Suspension and solution plasma spraying of finely structured layers: potential application to SOFCs. J. Phys. D Appl. Phys. 40, 2394–2406 (2007)Ramachandran, K., Selvajaran, V., Ananthapadmanabhan, P.V., Sreekumar, K.P.: Microstructure, adhesion, micro hardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina–titania coatings. Thin Solid Films 315, 144–152 (1998)Lee, S.W., Morillo, C., Lira-Olivares, J., Kim, S.H., Sekino, T., Niihara, K., Hockey, B.J.: Tribological and microstructural analysis of Al2O3/13TiO2 nanocomposites to use in femoral head of hip replacement. Wear 225, 1040–1044 (2003)Dejang, N., Watcharapasorn, A., Wirojupatump, S., Niranatlumpong, P., Jiansirisomboon, S.: Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: a role of nano-sized TiO2 addition. Surf. Coat. Technol. 204, 1651–1657 (2010)Yimaz, S.: An evaluation of plasma sprayed coatings based on Al2O3 and Al2O3–13wt% TiO2 with bond coat on pure titanium substrate. Ceram. Int. 35, 2017–2022 (2009)Fervel, V., Normand, B., Coddet, C.: Tribological behavior of plasma sprayed Al2O3-based cermet coatings. Wear 230(1), 70–77 (1999)Vargas, F., Ageorges, H., Fauchais, P., López, M.E.: Mechanical and a tribological performance of Al2O3 coatings elaborated by flame and plasma spraying. Surf. Coat. Technol. 205, 1132–1136 (2010)Bacciochini, A., Ilavsky, J., Montavon, G., Denoirjean, A., Ben-ettouil, F., Valette, S., Fauchais, P., Wittmann-teneze, K.: Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using ultra-small-angle X-ray scattering (USAXS). Mater. Sci. Eng. 528, 91–102 (2010)ASTM International: ASTM G99-03: Standard test method for wear testing with a pin-on-disc apparatus. ASTM annual book of standards. ASTM International: West Conshohocken (2003)Lancaster, K.: The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear 10, 103–107 (1967)Fauchais, P., Rat, V., Delbos, C., Fazilleau, J., Coudert, J.F., Chartier, T., Bianchi, L.: Understanding of suspension plasma spraying of finely structured coatings for SOFC. IEEE Plasma Sci. 33(2), 920–930 (2005)Bannier, E., Vicent, M., Rayón, E., Benavente, R., Salvador, M.D., Sánchez, E.: Effect of TiO2 addition on the microstructure and nanomechanical properties of Al2O3 suspension plasma sprayed coatings. Appl. Surf. Sci. 316, 141–146 (2014)Darut, G., Klyatskina, E., Valette, S., Carles, P., Denoirjean, A., Montavon, G., Ageorges, H., Segovia, F., Salvador, M.D.: Architecture and phases composition of suspension plasma sprayed alumina–titania sub-micrometer-sized coatings. Mater. Lett. 67, 241–244 (2012)Fauchais, P., Montavon, G.: Latest developments in suspension and liquid precursor thermal spraying. J. Therm. Spray Technol. 19(1–2), 226–239 (2010)Darut, G., Ben-Ettouli, F., Denoirjean, A., Montavon, G., Ageourges, H., Fauchais, P.: Dry sliding behavior of sub-micrometer-sized suspension plasma sprayed ceramic oxide coatings. J. Therm. Spray Technol. 19, 275–285 (2010)Tingaud, O., Bacciochini, A., Montavon, G., Denoirjean, A., Fauchais, P.: Suspension DC plasma spraying of thick finely-structured ceramic coatings: process manufacturing mechanisms. Surf. Coat. Technol. 203, 2157–2161 (2009)Guesama, S., Bounazef, M., Nardin, P., Sahraoui, T.: Wear behavior of alumina–titania coatings: analysis of process and parameters. Ceram. Int. 32, 13–19 (2006)Espinosa-Fernández, L., Borrell, A., Salvador, M.D., Gutierrez-Gonzalez, C.F.: Sliding wear behavior of WC–Co–Cr3C2–VC composites fabricated by conventional and non-conventional techniques. Wear 307, 60–67 (2013)Zhang, J., Moslehy, F.A., Rice, S.L.: A model for friction in quasi-steady-state. Part I. Derivation. Wear 149, 1–12 (1991)Zhang, J., Moslehy, F.A., Rice, S.L.: A model for friction in quasi-steady-state sliding Part II. Numerical results and discussion. Wear 149, 13–25 (1991)Bolelli, G., Cannilo, V., Lusvarghi, L., Manfredini, T.: Wear behaviour of thermally sprayed ceramic oxide coatings. Wear 261, 1298–1315 (2006)Normand, B., Fervel, V., Coddet, C., Nikitine, V.: Tribological properties of plasma sprayed alumina–titania coatings: next term role and control of the microstructure. Surf. Coat. Technol. 123, 278–287 (2000)Hutchings, I.: Tribology: friction and wear of engineering materials. Mater. Des. 13, 187 (1992)Ahn, J., Hwang, B., Song, E.P., Lee, S., Kim, N.J.: Correlation of microstructure and wear resistance of Al2O3–TiO2 coatings plasma sprayed with nanopowders. Metall. Mater. Trans. A 37, 1851–1860 (2006)Erickson, L.C., Hawthorne, H.M., Troczynski, T.: Correlations between microstructural parameters, micromechanical properties and wear resistance of plasma sprayed ceramic coatings. Wear 250, 569–575 (2001)Song, E.P., Ahn, J., Lee, S., Kim, N.J.: Microstructure and wear resistance of nanostructured Al2O3–8 wt%TiO2 coatings plasma-sprayed with nanopowders. Surf. Coat. Technol. 201, 1309–1315 (2006)Tucker Jr., R.C.: ASM Handbook Volume 5A: Thermal Spray Technology. ASM International, Materials Park (2013)Stachowiack, G.W., Batchelor, A.: Engineering Tribology Handbook. Elsevier-Butterworth-Heineman: Oxford (2005)Fischer, T.E., Zhu, Z., Kim, H., Shin, D.S.: Genesis and role of wear debris in sliding wear of ceramics. Wear 245, 53–60 (2000)Lima, R.S., Moureau, C., Marple, B.R.: HVOF-sprayed coatings engineered from mixtures of nanostructured and submicron Al2O3–TiO2 powders: an enhanced wear performance. J. Therm. Spray Technol. 16, 866 (2007

    Laser Ablation

    No full text

    Laser Beam Machining

    No full text

    Laser Beam Machining

    No full text

    Coatings with laser melt injection of ceramic particles

    No full text
    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6Al4V alloys were studied experimentally and theoretically by FEM calculations. The laser employed is a high power Nd:YAG The formation of a relatively thick aluminium oxide layer on Al melt surface was confirmed during in-situ melting in an Environmental Scanning Electron Microscope (ESEM) at temperatures above 900 degreesC. This oxide layer acts as a barrier for particle penetration but it can be dissolved in the melt at temperatures above 1250 degreesC and consequently it opens a "window" for particles injection The finite element analysis of the laser melting process of Al-Si alloy leads to the conclusions, that the laser scan velocity has only a small influence on the substrate temperature distribution in the vicinity of the laser beam and that the size of extended part of laser melt pool (which is the best place for injection) is extremely small. Therefore, in contrast to Ti-alloys an extension of a melt pool size behind the laser beam, which serves as an effective instrument for successful LMI of ceramic particles, is not a successful processing route in the case of Al alloys. Further, the relationship between microstructure, tensile and wear properties has been investigated for SiC/Al-Si and WC/Ti-Al-V metal matrix composite layers. Although the presence of hard and brittle phases formed during the laser processing decreases the tensile strength in comparison with substrate materials, a massive improvement of wear resistance of both layers is confirmed. As in-situ (ESEM) tensile tests show the crack initiation process in WC/Ti-Al-V layer strongly depends on a type of WC powder used in laser melt injection process
    corecore