85 research outputs found

    Structural and chemical requirements for histidine phosphorylation by the chemotaxis kinase CheA

    Get PDF
    The CheA histidine kinase initiates the signal transduction pathway of bacterial chemotaxis by autophosphorylating a conserved histidine on its phosphotransferase domain (P1). Site-directed mutations of neighboring conserved P1 residues (Glu-67, Lys-48, and His-64) show that a hydrogen-bonding network controls the reactivity of the phospho-accepting His (His-45) in Thermotoga maritima CheA. In particular, the conservative mutation E67Q dramatically reduces phospho-transfer to P1 without significantly affecting the affinity of P1 for the CheA ATP-binding domain. High resolution crystallographic studies revealed that although all mutants disrupt the hydrogen-bonding network to varying degrees, none affect the conformation of His-45. N-15-NMR chemical shift studies instead showed that Glu-67 functions to stabilize the unfavored (NH)-H-delta 1 tautomer of His-45, thereby rendering the N-epsilon 2 imidazole unprotonated and well positioned for accepting the ATP phosphoryl group

    NMR studies of the phosphotransfer domain of the histidine kinase CheA from Escherichia coli: assignments, secondary structure, general fold, and backbone dynamics

    Get PDF
    Multidimensional heteronuclear NMR techniques were applied to study the phosphotransfer domain, residues 1 - 134, of the histidine kinase CheA, from Escherichia coli, which contains the site of autophosphorylation, His48. Assignments of the backbone amide groups and side chain patons are nearly complete. Our studies show that this protein fragment consists of five a-helices (A-E)connected by turns. Analysis of NOE distance restraints provided by two-dimensional (2D) ^1H-^1H and three-dimensional (3D) ^(15)N-edited NOESY spectra using model building and structure calculations indicates that the five helices form an antiparallel helix bundle with near-neighbor connectivity. The amino-tenninal four helices are proposed to be arranged in a right-handed manner with helix E packing against helices C and D. From ideal hydrophobic helical packing and structure calculations, the site of autophosphorylation, His48, is nearly fully exposed to the solvent. We measured the NMR relaxation properties of the backbone ^(15)N nuclei using inverse detected two-dimensional NMR spectroscopy. The protein backbone dynamics studies show that CheA1-134 is formed into a tight and compact structure with very limited flexibilities both in helices and turns. Structural implications of titration and phosphorylation experiments are briefly discussed

    Phosphotransfer and CheY-Binding Domains of the Histidine Autokinase CheA Are Joined by a Flexible Linker

    Get PDF
    Multidimensional heteronuclear NMR techniques were applied to study a protein fragment of the histidine autokinase CheA from Escherichia coli. This fragment (CheA_(1-233)) contains the phosphotransfer domain and the CheY-binding domain joined by a linker region. Comparison of chemical shift and NOE cross-peak patterns indicates that the structures of the two domains in CheA_(1-233) remain nearly the same as in the two individual domain fragments, CheA1-134 and CheA_(124-257). Relaxation properties of the backbone ^(15)N nuclei were measured to study the rotational correlations of the two domains and properties of the linker region. Dynamics data were analyzed both by an isotropic motional model and an anisotropic motional model. The experimental T_1 and T_2 values, the derived rotational correlation times, and motional anisotropy are significantly different for the two domains, indicating the two domains reorient independently and the linker region is highly flexible. Dynamics data of CheA_(1-233) were also compared with those of CheA_(1-134). Our studies show that flexible domain linkers and extended and flexible terminal polypeptide chains can have significant effects on the motional properties of the adjacent structured regions. These observations suggest a model for the graded regulation of CheA autophosphorylation activity. In this model, the various activity states of the receptor are generated by controlling the access of the mean position of the kinase domain to the phosphotransfer domain. This would then modulate the diffusional encounter rate of the domains and hence activity over a wide and graded range of values

    Paradoxical enhancement of chemoreceptor detection sensitivity by a sensory adaptation enzyme

    Full text link
    A sensory adaptation system that tunes chemoreceptor sensitivity enables motile Escherichia coli cells to track chemical gradients with high sensitivity over a wide dynamic range. Sensory adaptation involves feedback control of covalent receptor modifications by two enzymes: CheR, a methyltransferase, and CheB, a methylesterase. This study describes a CheR function that opposes the signaling consequences of its catalytic activity. In the presence of CheR, a variety of mutant serine chemoreceptors displayed up to 40-fold enhanced detection sensitivity to chemoeffector stimuli. This response enhancement effect did not require the known catalytic activity of CheR, but did involve a binding interaction between CheR and receptor molecules. Response enhancement was maximal at low CheR:receptor stoichiometry and quantitative analyses argued against a reversible binding interaction that simply shifts the ON-OFF equilibrium of receptor signaling complexes. Rather, a short-lived CheR binding interaction appears to promote a long-lasting change in receptor molecules, either a covalent modification or conformation that enhances their response to attractant ligands

    The structure and dynamic properties of the complete histidine phosphotransfer domain of the chemotaxis specific histidine autokinase CheA from Thermotoga maritima

    Get PDF
    The bacterial histidine autokinase CheA contains a histidine phosphotransfer (Hpt) domain that accepts a phosphate from the catalytic domain and donates the phosphate to either target response regulator protein, CheY or CheB. The Hpt domain forms a helix-bundle structure with a conserved four-helix bundle motif and a variable fifth helix. Observation of two nearly equally populated conformations in the crystal structure of a Hpt domain fragment of CheA from Thermotoga maritima containing only the first four helices suggests more mobility in a tightly packed helix bundle structure than previously thought. In order to examine how the structures of Hpt domain homologs may differ from each other particularly in the conformation of the last helix, and whether an alternative conformation exists in the intact Hpt domain in solution, we have solved a high-resolution, solution structure of the CheA Hpt from T. maritima and characterized the backbone dynamics of this protein. The structure contains a four-helix bundle characteristic of histidine phosphotransfer domains. The position and orientation of the fifth helix resembles those in known Hpt domain crystal and solution structures in other histidine kinases. The alternative conformation that was reported in the crystal structure of the CheA Hpt from T. maritima missing the fifth helix is not detected in the solution structure, suggesting a role for the fifth helix in providing stabilizing forces to the overall structure

    Flagellar Motor Architecture

    Get PDF

    Switched or Not?: the Structure of Unphosphorylated CheY Bound to the N Terminus of FliM

    No full text
    Phosphorylation of Escherichia coli CheY increases its affinity for its target, FliM, 20-fold. The interaction between BeF(3)(−)-CheY, a phosphorylated CheY (CheY∼P) analog, and the FliM sequence that it binds has been described previously in molecular detail. Although the conformation that unphosphorylated CheY adopts in complex with FliM was unknown, some evidence suggested that it is similar to that of CheY∼P. To resolve the issue, we have solved the crystallographic structure of unphosphorylated, magnesium(II)-bound CheY in complex with a synthetic peptide corresponding to the target region of FliM (the 16 N-terminal residues of FliM [FliM(16)]). While the peptide conformation and binding site are similar to those of the BeF(3)(−)-CheY-FliM(16) complex, the inactive CheY conformation is largely retained in the unphosphorylated Mg(2+)-CheY-FliM(16) complex. Communication between the target binding site and the phosphorylation site, observed previously in biochemical experiments, is enabled by a network of conserved side chain interactions that partially mimic those observed in BeF(3)(−)-activated CheY. This structure makes clear the active role that the β4-α4 loop plays in the Tyr(87)-Tyr(106) coupling mechanism that enables allosteric communication between the phosphorylation site and the target binding surface. Additionally, this structure provides a high-resolution view of an intermediate conformation of a response regulator protein, which had been generally assumed to be two state
    • …
    corecore