16 research outputs found

    TraceMet - Calculation and Reporting Rules - Traceability – a pilot for sustainable metals and minerals (TraceMet)

    No full text
    This document was compiled during 2020 and early 2021 within the TraceMet project, funded by the strategic innovation program Swedish Mining Innovation, a joint investment of Vinnova, Formas and the Swedish Energy Agency. The document contains the Product Category Rules (PCR) - the methodology rules for how to calculate and report carbon footprint and recycled content for metal products. The document contains the Product Category Rules (PCR) - the methodology rules for how to calculate and report carbon footprint and recycled content for metal products and Specific Methods, Assumptions and Data (SMAD) for the two pilots with specific metal qualities.It is important to use rules when tracing carbon footprint and degree of recycled content of metals. This report regards product category rules (PCR) for tracing of these parameters in a steel and copper value chain respectively for the project TraceMet that was run in year 2020

    Lithium-Ion Vehicle Battery Production - Status 2019 on Energy Use, CO2 Emissions, Use of Metals, Products Environmental Footprint, and Recycling

    No full text
    Major reasons for a lower GWP in the update The battery manufacturing supply chain is often divided into material sourcing, cell and component production, and battery pack manufacture. The previous report highlighted the differences in energy-use in cell manufacture, which is the focus of most of this update. The most energy-intensive step for cell production is the dry-room, for which newer data has been measured in newer studies. The measurements were done in several larger production plants which ran more efficiently per battery produced than for pilot plants. Changes to the modelling of an energy-intensive evaporation step to reflect real production has decreased the energy estimate further. Battery production considerations Although the carbon dioxide emitted is a big contributor to environmental burdens, battery production also requires the sourcing of metals which produce negative environmental and social effects in the supplying countries. The amounts that need to be mined in coming years will depend on the types of batteries produced, and how successful battery recycling will be.With an increasing number of battery electric vehicles being produced, the contribution of the lithium-ion batteries’ emissions to global warming has become a relevant concern. The wide range of emission estimates in LCAs from the past decades have made production emissions a topic for debate. This IVL report updates the estimated battery production emissions in global warming potential (GWP) with data from recent years

    Plastics in passenger cars - A comparison over types and time

    No full text
    This study compared plastics content in passenger cars. It concluded that there has likely been no change in passenger cars’ plastics share in the past twenty years and the next five years will likely tell a similar story. Three methods were used to estimate the future trends for plastics content in cars. The first was a literature review. This data showed a slight increase of plastic material shares in some sources, but the transparency of data selection, material categorization (what is a “plastic”), and calculation methods left us questioning its legitimacy. The second method was based on our own selection of cars representing the Swedish car fleet with A2mac1 vehicle breakdown data for each model. Since we controlled more variables in this data, we were more convinced of its legitimacy. The results show that there has been no change in plastics fraction in cars for each separate driveline in the past twenty years. The third method was using Volvo car material data compiled from each model’s numerous part suppliers for a single production year, to compare to the other methods. The study was conducted as part of the project Explore in the research program Closing the Loop, funded by Mistra.The automotive industry uses almost ten percent of all plastics in Europe. To map the potential recyclable plastic material available for recycling today and into future years, this study has analyzed the history of plastics in cars, as well as several factors that may affect the plastics content in cars to be recycled

    The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium-Ion Batteries

    No full text
    The study consists of a review of available life cycle assessments on lithium-ion batteries for light-duty vehicles, and the results from the review are used to draw conclusions on how the production stage impacts the greenhouse gas emissions. The report also focuses on the emissions from each individual stage of the battery production, including; mining, material refining, refining to battery grade, and assembly of components and battery. The report is largely structured based on a number of questions. The questions are divided in two parts, one focusing on short-term questions and the second on more long-term questions. To sum up the results of this review of life cycle assessments of lithium-ion batteries we used the questions as base. Part 1 – Review the iteratively specified chemistries and answer the following short-term questions related to the battery production: How large are the energy use and greenhouse emissions related to the production of lithium-ion batteries? How large are the greenhouse gas emissions related to different production steps including mining, processing and assembly/manufacturing? What differences are there in greenhouse gas emissions between different production locations? Do emissions scale with the battery weight and kWh in a linear or non-linear fashion? Part 2 – To answer more long-term questions related to opportunities to reduce the energy use and greenhouse gas emissions from battery production. a) What opportunities exist to improve the emissions from the current lithium-ion battery chemistries by means of novel production methods? b) What demands are placed on vehicle recycling today? c) How many of the lithium-ion batteries are recycled today and in what way? d) What materials are economically and technically recoverable from the batteries today? e) What recycling techniques are being developed today and what potential do they have to reduce greenhouse gas emissions? f) How much of the production emissions can be allocated to the vehicle? Based on the assessment of the posed questions, our conclusions are that the currently available data are usually not transparent enough to draw detailed conclusions about the battery’s production emissions. There is, regardless, a good indication of the total emissions from the production, but this should be viewed in light of there being a small number of electric vehicles being produced compared to the total number of vehicles. The potential effects of scale up are not included in the assessments. Primary data for production, especially production of different pack sizes, is therefore interesting for future work. This report also concludes that there is no fixed answer to the question of the battery’s environmental impact. There is great potential to influence the future impact by legislative actions, especially in the area of recycling. Today there is no economic incentive for recycling of lithium-ion batteries, but by placing the correct requirements on the end of life handling we can create this incentive. Coupling this type of actions with support for technology development both in battery production processes and battery recycling can ensure a sustainable electric vehicle fleet. The review of the available life cycle assessments also highlighted that there is a need for improving the primary data used in the studies, as there is little new data being presented. Additionally, the studies are often not transparent in their data choices and modelling assumptions, leading to a situation where comparing results becomes very difficult. Regardless of this, the review found a number of critical factors for determining differences in the results. The assumptions regarding manufacturing were shown to have the greatest variation and impact on the total result. In order to improve our understanding of the environmental impact of the battery production we need more than LCA results. We need more clear technical descriptions of each production step and where they are performed so that the emissions found in the reviewed life cycles assessments can be defined into different stages. Not until we have a clear definition of stages can we assess where the energy consumption and emissions are largest, or what actions that can help lower the impact.This report presents the findings from the Swedish Energy Agency and the Swedish Transport Administration commissioned study on the Life Cycle energy consumption and greenhouse gas emissions from lithium-ion batteries. It does not include the use phase of the batteries. Den hĂ€r rapporten finns endast pĂ„ engelska

    Utveckling av innovativa koncept för konkurrenskraftig produktion av flytande biogas Delrapport 6: Livscykelanalys (IVL)

    No full text
    Den hĂ€r rapporten finns endast pĂ„ engelska.Denna rapport redovisar miljöpĂ„verkan frĂ„n sju olika tekniksystem för polering och förvĂ€tskning av biogas till flytande biogas (LBG) dĂ€r fyra stycken innehĂ„ller askfilter, som Ă€r en ny teknik. MiljöpĂ„verkan för alla system Ă€r liten och miljöskadekostnaden Ă€r endast 0,030 – 0,065 Euro/kg LBG. För vĂ€xthusgaser Ă€r emissionerna cirka 80 procent lĂ€gre Ă€n för produktion av MK1-diesel

    Re:Sourse MÀtning av produktcirkularitet som ett sÀtt att öka resursproduktivitet

    No full text
    Ett mÄtt som mÀter cirkularitet, det vill sÀga hur stor andel av en produkt som har anvÀnts tidigare eller Ätervunnits och dess vÀrde har nu testats i samarbete med ett antal företag. Syftet Àr att skapa tydlighet och mÀtbarhet som kan underlÀtta övergÄngen till en cirkulÀr ekonomi. Projektet har genomförts av RISE och IVL Svenska Miljöinstitutet inom ramen för det strategiska innovationsprogrammet Re:source och IVL stod för jÀmförelse med livscykelanalys

    Mapping of LITHIUM-ION BATTERIES for vehicles - A Study of their fate in the Nordic countries

    No full text
    This report regards the fate of the lithium-ion batteries used in vehicles in the Nordic countries. There are only very few large vehicle batteries that are worn out today, but about approximately 40,000 from e-bikes which are very much smaller. Based on the life length of batteries in current electric cars, the current flows of new batteries (2015–2018) are the ones that will be available for recycling in 2025–2030. They are, however, quickly out-shadowed by the projected increase in number of car batteries on the market, growing from around 0.5 million units 2018 to 4 million units by 2030. The report presents scenarios of amounts of batteries used for second-use after the use in the cars and describes different options for recycling including research in the field.This study made for the Nordic Council of Ministers regards the current and future flows of used lithium-ion batteries in vehicles, thus how much that are currently collected, re-used and recycled in the Nordic countries and the trends for the future

    Energi-och miljömÀrkning av lÀtta fordon : FrÄgebatteri för produktions- och skrotningsfaserna

    No full text
    I denna rapport analyseras olika möjligheter och metoder för att deklarera miljö- och energiaspekter som uppstÄr vid tillverkning och skrotning av personbilar och lÀtta lastbilar. Uppdraget har bestÀllts av Energimyndigheten som har fÄtt i uppdrag av Regeringen att ta fram ett förslag till en metod för energi- och miljömÀrkning av lÀtta fordon pÄ den svenska marknaden. Dagens regelverk inom EU stÀller inga krav pÄ att tillverkaren behöver ange energiÄtgÄng och miljöpÄverkan vid tillverkning och skrotning av ett fordon. Det finns dÀrför inga officiella uppgifter som skulle kunna anvÀndas i en miljömÀrkning. Man Àr i stÀllet hÀnvisad till att antingen anvÀnda generella data frÄn livscykelanalyser, eller begÀra in frivilliga uppgifter frÄn tillverkaren. IVL Svenska Miljöinstitutet har tagit fram tÀnkbara alternativ till att energi- och miljömÀrka tillverkningsfasen inklusive Ätervinning och skrotning. Rekommendationen Àr att en sÄdan miljö-mÀrkning införs i flera steg och eftersom det saknas officiella uppgifter om enskilda fordon behöver metodiken utprovas gradvis. I rapporten presenteras tre olika förslag pÄ upplÀgg med varierande detaljnivÄ.  I alternativ 1 föreslÄs att man tar fram ett schablonvÀrde vardera för energiÄtgÄng och vÀxthusgaser för ett urval av sex typer av personbilar respektive lÀtta lastbilar. VÀrdet ska motsvara den genomsnittliga energiÄtgÄngen och de genomsnittliga utslÀppen av vÀxthusgaser pÄ global nivÄ vid tillverkning, skrotning och Ätervinning av de olika typer av fordon som idag förekommer pÄ marknaden. Alternativ 2 utgÄr frÄn samma metod som alternativ 1 men schablonvÀrden för energiÄtgÄng och vÀxthusgaser anges istÀllet som en funktion av fordonets tjÀnstevikt. Alternativ 3 utgÄr frÄn ocksÄ frÄn schablonvÀrden för energiÄtgÄng och vÀxthusgaser men siffrorna kompletteras med tillverkaruppgifter om vÀxthusgaser frÄn tillverkningen av laddbara batterier. För att fÄ en mer heltÀckande bild föreslÄs ett komplement till alternativen ovan att tillverkaren Àven erbjuds att frivilligt besvara ett antal frÄgor som belyser fler miljöaspekter
    corecore