656 research outputs found

    Selection of high-z supernovae candidates

    Get PDF
    Deep, ground based, optical wide-field supernova searches are capable of detecting a large number of supernovae over a broad redshift range up to z~1.5. While it is practically unfeasible to obtain spectroscopic redshifts of all the supernova candidates right after the discovery, we show that the magnitudes and colors of the host galaxies, as well as the supernovae, can be used to select high-z supernova candidates, for subsequent spectroscopic and photometric follow-up. Using Monte-Carlo simulations we construct criteria for selecting galaxies in well-defined redshift bands. For example, with a selection criteria using B-R and R-I colors we are able to pick out potential host galaxies for which z>0.85 with 80% confidence level and with a selection efficiency of 64-86%. The method was successfully tested using real observations from the HDF. Similarly, we show that that the magnitude and colors of the supernova discovery data can be used to constrain the redshift. With a set of cuts based on V-R and R-I in a search to m_I~25, supernovae at z~1 can be selected in a redshift interval sigma_z <0.15.Comment: 33 pages, 13 figures, accepted for publication in PASP (March 2002 issue

    Detecting z > 2 Type IIn Supernovae

    Full text link
    Type IIn supernovae (SNe IIn) dominate the brightest supernova events in observed FUV flux (~1200-2000A). We show that multi-band, multi-epoch optical surveys complete to m_r = 27 can detect the FUV emission of ~25 z > 2 SNe IIn deg^-2 yr^-1 rest-frame (~10 SNe IIn deg^-2 yr^-1 observed-frame) to 4 sigma using a technique monitoring color-selected galaxies. Moreover, the strength and evolution of the bright emission lines observed in low redshift SNe IIn imply that the Ly-a emission features in ~70% of z > 2 SNe IIn are above 8m-class telescope spectroscopic thresholds for ~2 yr rest-frame. As a result, existing facilities have the capability to both photometrically detect and spectroscopically confirm z > 2 SNe IIn and pave the way for efficient searches by future 8m-class survey and 30m-class telescopes. The method presented here uses the sensitivities and wide-field capabilities of current optical instruments and exploits (1) the efficiency of z > 2 galaxy color-selection techniques, (2) the intrinsic brightness distribution ( = -19.0 +/-0.9) and blue profile of SNe IIn continua, (3) the presence of extremely bright, long-lived emission features, and (4) the potential to detect blueshifted SNe Ly-a emission shortward of host galaxy Ly-a features.Comment: 26 pages (pre-print), 6 figures, accepted Ap

    Finite elements and the discrete variable representation in nonequilibrium Green's function calculations. Atomic and molecular models

    Get PDF
    In this contribution, we discuss the finite-element discrete variable representation (FE-DVR) of the nonequilibrium Green's function and its implications on the description of strongly inhomogeneous quantum systems. In detail, we show that the complementary features of FEs and the DVR allows for a notably more efficient solution of the two-time Schwinger/Keldysh/Kadanoff-Baym equations compared to a general basis approach. Particularly, the use of the FE-DVR leads to an essential speedup in computing the self-energies. As atomic and molecular examples we consider the He atom and the linear version of H3+_3^+ in one spatial dimension. For these closed-shell models we, in Hartree-Fock and second Born approximation, compute the ground-state properties and compare with the exact findings obtained from the solution of the few-particle time-dependent Schr\"odinger equation.Comment: 12 pages, 3 figures, submitted as proceedings of conference "PNGF IV

    Nonequilibrium Green's functions approach to strongly correlated few-electron quantum dots

    Full text link
    The effect of electron-electron scattering on the equilibrium properties of few-electron quantum dots is investigated by means of nonequilibrium Green's functions theory. The ground and equilibrium state is self-consistently computed from the Matsubara (imaginary time) Green's function for the spatially inhomogeneous quantum dot system whose constituent charge carriers are treated as spin-polarized. To include correlations, the Dyson equation is solved, starting from a Hartree-Fock reference state, within a conserving (second order) self-energy approximation where direct and exchange contributions to the electron-electron interaction are included on the same footing. We present results for the zero and finite temperature charge carrier density, the orbital-resolved distribution functions and the self-consistent total energies and spectral functions for isotropic, two-dimensional parabolic confinement as well as for the limit of large anisotropy--quasi-one-dimensional entrapment. For the considered quantum dots with N=2, 3 and 6 electrons, the analysis comprises the crossover from Fermi gas/liquid (at large carrier density) to Wigner molecule or crystal behavior (in the low-density limit)

    Kadanoff-Baym approach to time-dependent quantum transport in AC and DC fields

    Full text link
    We have developed a method based on the embedded Kadanoff-Baym equations to study the time evolution of open and inhomogeneous systems. The equation of motion for the Green's function on the Keldysh contour is solved using different conserving many-body approximations for the self-energy. Our formulation incorporates basic conservation laws, such as particle conservation, and includes both initial correlations and initial embedding effects, without restrictions on the time-dependence of the external driving field. We present results for the time-dependent density, current and dipole moment for a correlated tight binding chain connected to one-dimensional non-interacting leads exposed to DC and AC biases of various forms. We find that the self-consistent 2B and GW approximations are in extremely good agreement with each other at all times, for the long-range interactions that we consider. In the DC case we show that the oscillations in the transients can be understood from interchain and lead-chain transitions in the system and find that the dominant frequency corresponds to the HOMO-LUMO transition of the central wire. For AC biases with odd inversion symmetry odd harmonics to high harmonic order in the driving frequency are observed in the dipole moment, whereas for asymmetric applied bias also even harmonics have considerable intensity. In both cases we find that the HOMO-LUMO transition strongly mixes with the harmonics leading to harmonic peaks with enhanced intensity at the HOMO-LUMO transition energy.Comment: 16 pages, 9 figures. Submitted at "Progress in Nonequilibrium Green's Functions IV" conferenc

    On the Relation Between Peak Luminosity and Parent Population of Type Ia Supernovae: A New Tool for Probing the Ages of Distant Galaxies

    Get PDF
    We study the properties of Type Ia Supernovae (SNe Ia) as functions of the radial distance from their host galaxy centers. Using a sample of 62 SNe Ia with reliable luminosity, reddening, and decline rate determinations, we find no significant radial gradients of SNe Ia peak absolute magnitudes or decline rates in elliptical+S0 galaxies, suggesting that the diversity of SN properties is not related to the metallicity of their progenitors. We do find that the range in brightness and light curve width of supernovae in spiral galaxies extends to brighter, broader values. These results are interpreted as support for an age, but not metallicity, related origin of the diversity in SNe Ia. If confirmed with a larger and more accurate sample of data, the age-luminosity relation would offer a new and powerful tool to probe the ages and age gradients of stellar populations in galaxies at redshift as high as z12z\sim1-2. The absence of significant radial gradients in the peak (BV)0\rm (B-V)_0 and (VI)0\rm (V-I)_0 colors of SNe Ia supports the redding correction method of Phillips et al (1999). We find no radial gradient in residuals from the SN Ia luminosity-width relation, suggesting that the relation is not affected by properties of the progenitor populations and supporting the reliability of cosmological results based upon the use of SNe Ia as distance indicators.Comment: 19 pages, incl. 3 tables & 3 figures; to appear in Nov 2000 issue of Ap

    Helium and Iron in X-ray galaxy clusters

    Get PDF
    I discuss the role of the sedimentation of helium in galaxy cluster cores on the observed X-ray properties and present a history of the metal accumulation in the ICM, with new calculations with respect to my previous work following the recent evidence of a bi-modal distribution of the delay time in Supernovae Type Ia.Comment: 6 pages. To appear in the Proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching (Germany

    Deciphering the cosmic star formation history and the Nature of Type Ia Supernovae by Future Supernova Surveys

    Full text link
    We investigate the prospects of future supernova searches to get meaningful constraints about the cosmic star formation history (CSFH) and the delay time of type Ia supernovae from star formation (tau_{Ia}), based only on supernova data. Here we parameterize the CSFH by two parameters, alpha and beta that are the evolutionary indices (proportional to (1+z)^{alpha, beta}) at z ~ 1, respectively, and quantitatively examined how well the three parameters (alpha, beta, and tau_{Ia}) can be constrained in ongoing and future supernova surveys. We found that the type classification of detected supernovae down to the magnitude of I_{AB} ~ 27 is essential, to get useful constraint on beta. The parameter tau_{Ia} can also be constrained within an accuracy of ~ 1--2 Gyr, without knowing alpha that is somewhat degenerate with tau_{Ia}. This might be potentially achieved by ground-based surveys but depending on the still highly uncertain type-classification by imaging data. More reliable classification will be achieved by the SNAP mission. The supernova counts at a magnitude level of I_{AB} or K_{AB} ~ 30 will allow us to break degeneracies between alpha and tau_{Ia} and independently constrain all the three parameters, even without knowing supernova types. This can be achieved by the SNAP and JWST missions, having different strength of larger statistics and reach to higher redshifts, respectively. The dependence of observable quantities on survey time intervals is also quantitatively calculated and discussed.Comment: 10 pages, 6 figures, accepted to Ap

    Morphological Analysis of Activity-Reduced Adult-Born Neurons in the Mouse Olfactory Bulb

    Get PDF
    Adult-born neurons (ABNs) are added to the olfactory bulb (OB) throughout life in rodents. While many factors have been identified as regulating the survival and integration of ABNs into existing circuitry, the understanding of how these factors affect ABN morphology and connectivity is limited. Here we compare how cell intrinsic [small interfering RNA (siRNA) knock-down of voltage gated sodium channels NaV1.1–1.3] and circuit level (naris occlusion) reductions in activity affect ABN morphology during integration into the OB. We found that both manipulations reduce the number of dendritic spines (and thus likely the number of reciprocal synaptic connections) formed with the surrounding circuitry and inhibited dendritic ramification of ABNs. Further, we identified regions of ABN apical dendrites where the largest and most significant decreases occur following siRNA knock-down or naris occlusion. In siRNA knock-down cells, reduction of spines is observed in proximal regions of the apical dendrite. This suggests that distal regions of the dendrite may remain active independent of NaV1.1–1.3 channel expression, perhaps facilitated by activation of T-type calcium channels and NMDA receptors. By contrast, circuit level reduction of activity by naris occlusion resulted in a global depression of spine number. Together, these results indicate that ABNs retain the ability to develop their typical overall morphological features regardless of experienced activity, and activity modulates the number and location of formed connections

    Kadanoff-Baym approach to double-excitations in finite systems

    Full text link
    We benchmark many-body perturbation theory by studying neutral, as well as non-neutral, excitations of finite lattice systems. The neutral excitation spectra are obtained by time-propagating the Kadanoff-Baym equations in the Hartree-Fock and second Born approximations. Our method is equivalent to solving the Bethe-Salpeter equation with a high-level kernel while respecting self-consistently, which guarantees the fulfillment of a frequency sum rule. As a result, we find that a time-local method, such as Hartree-Fock, can give incomplete spectra, while already the second Born, which is the simplest time-nonlocal approximation, reproduces well most of the additional excitations, which are characterized as double-excitations.Comment: 20 pages, 10 figure
    corecore