421 research outputs found

    Determination of pH in Regions of the Midguts of Acaridid Mites

    Get PDF
    The pH of the guts of mites strongly affects their digestive processes. This study was carried out to determine the pH in the guts of 12 species of stored product and house dust mites. Eighteen pH indicators were chosen and offered to the mites in the feeding biotest. Based on the color changes of the indicators, the gut contents of acaridid mites were determined to be within a pH range of 4 to neutral. The gut contents showed a gradient in pH from the anterior to the posterior part. The anterior midgut (ventriculus and caeca) of most species had a pH ranging from 4.5 to 5, or slightly more alkaline for most of the species, while the middle midgut (intercolon/colon) had a pH of 5 to 6. Finally, the pH of the posterior midgut (postcolon) was between 5.5 and 7. Except for Dermatophagoides spp., no remarkable differences in the pH of the gut were observed among the tested species. Dermatophagoides spp. had a more acidic anterior midgut (a pH of 4 to 5) and colon (a pH of 5) with postcolon (a pH of below 6). The results characterizing in vivo conditions in the mite gut offer useful information to study the activity of mite digestive enzymes including their inhibitors and gut microflora

    High dietary salt does not significantly affect plasma 25-hydroxyvitamin D concentrations of Sprague Dawley rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Dahl salt-sensitive rat, but not the Dahl salt-resistant rat, develops hypertension and hypovitaminosis D when fed a high salt diet. Since the salt-sensitive rat and salt-resistant rat were bred from the Sprague Dawley rat, the aim of this research was to test the hypothesis that salt-resistant and Sprague Dawley rats would be similar in their vitamin D endocrine system response to high salt intake.</p> <p>Findings</p> <p>Sprague Dawley, salt-sensitive, and salt-resistant rats were fed high (80 g/kg, 8%) or low (3 g/kg, 3%) salt diets for three weeks. The blood pressure of Sprague Dawley rats increased from baseline to week 3 during both high and low salt intake and the mean blood pressure at week 3 of high salt intake was higher than that at week 3 of low salt intake (<it>P </it>< 0.05). Mean plasma 25-hydroxyvitamin D concentrations (marker of vitamin D status) of Sprague Dawley, salt-sensitive, and salt-resistant rats were similar at week 3 of low salt intake. Mean plasma 25-hydroxyvitamin D concentrations of Sprague Dawley and salt-resistant rats were unaffected by high salt intake, whereas the mean plasma 25-hydroxyvitamin D concentration of salt-sensitive rats at week 3 of high salt intake was only 20% of that at week 3 of low salt intake.</p> <p>Conclusions</p> <p>These data indicate that the effect of high salt intake on the vitamin D endocrine system of Sprague Dawley rats at week 3 was similar to that of salt-resistant rats. The salt-sensitive rat, thus, appears to be a more appropriate model than the Sprague Dawley rat for assessing possible effects of salt-sensitivity on vitamin D status of humans.</p

    Valvular regurgitation and surgery associated with fenfluramine use: an analysis of 5743 individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Use of fenfluramines for weight loss has been associated with the development of characteristic plaques on cardiac valves causing regurgitation. However, previously published studies of exposure to fenfluramines have been limited by relatively small sample size, short duration of follow-up, and the lack of any estimate of the frequency of subsequent valvular surgery. We performed an observational study of 5743 users of fenfluramines examined by echocardiography between July 1997 and February 2004 in a single large cardiology clinic.</p> <p>Results</p> <p>The prevalence of at least mild aortic regurgitation (AR) or moderate mitral regurgitation (MR) was 19.6% in women and 11.8% in men (<it>p </it>< 0.0001 for gender difference). Duration of use was strongly predictive of mild or greater AR (<it>p </it>< 0.0001 for trend), MR (<it>p </it>= 0.002), and tricuspid regurgitation (TR) (<it>p </it>< 0.0001), as was earlier scan date (<it>p </it>< 0.0001 for those scanned prior to 1 January 2000 versus later). Increasing age was also independently associated with increased risk of AR and MR (both <it>p </it>< 0.0001). With mean follow-up of 30.3 months, AR worsened in 15.2%, remained the same in 63.1%, and improved in 21.7%. Corresponding values for MR were 24.8%, 47.4% and 27.9%. Pulmonary hypertension was strongly associated with MR but not AR. Valve surgery was performed on 38 patients (0.66% of 5743), 25 (0.44%) with clear evidence of fenfluramine-related etiology.</p> <p>Conclusion</p> <p>Regurgitant valvulopathy was common in individuals exposed to fenfluramines, more frequent in females, and associated with duration of use in all valves assessed. Valve surgery was performed as frequently for aortic as mitral valves and some tricuspid valve surgeries were also performed. The incidence of surgery appeared to be substantially increased compared with limited general population data.</p

    Stability and change in health behaviours as predictors for disability pension: a prospective cohort study of Swedish twins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stability or changes of health behaviours have not been studied in association with incidence of disability pension (DP). The aims were to (1) investigate if stability or changes in health behaviours predict DP due to musculoskeletal diagnosis (MSD), (2) to evaluate if an association exists for DP in general, and (3) after taking familial confounding into account.</p> <p>Methods</p> <p>The study sample was 16,713 like-sexed twin individuals born in Sweden between 1935-1958 (6195 complete twin pairs) who had participated in two surveys 25 years apart, were alive, and not pensioned at the time of the latest survey. Cox proportional hazards analysis was used to assess the associations (hazard ratios (HR) with 95% confidence intervals (CI)) between stability and change in health behaviours (physical activity, tobacco and alcohol use, body mass index (BMI)), and number of pain locations collected at two time points 25 years apart and the incidence of DP until 2008.</p> <p>Results</p> <p>During the follow-up, 1843 (11%) individuals were granted DP with 747 of these due to MSD. A higher proportion of women were granted DP than men. Increase in BMI and stable use of tobacco products were predictors for DP due to MSD (HR 1.21-1.48) and DP in general (HR 1.10-1.41). The stability in the frequency of physical activity and increased frequency of physical activity were protective factors for DP due to MSD only when accounting for familial confounding. However, the number of pain locations (stability, increase, or decrease) was the strongest predictor for future DP due to MSD (HR 3.69, CI 2.99-4.56) and DP in general (HR 2.15, CI 1.92-2.42). In discordant pair analysis, the HRs for pain were lower, indicating potential familial confounding.</p> <p>Conclusions</p> <p>Health behaviours in adulthood, including an increase in pain locations were associated with the incidence of DP. The association between physical activity and DP was especially related to adulthood choices or habits, i.e., the individual decision about frequency of exercising. Thus, it is important to e.g. increase public awareness of the potential beneficial effects of exercise throughout life to avoid permanent exclusion from the labour market for medical reasons.</p

    Cytotoxicity and ion release of alloy nanoparticles

    Get PDF
    It is well-known that nanoparticles could cause toxic effects in cells. Alloy nanoparticles with yet unknown health risk may be released from cardiovascular implants made of Nickel–Titanium or Cobalt–Chromium due to abrasion or production failure. We show the bio-response of human primary endothelial and smooth muscle cells exposed to different concentrations of metal and alloy nanoparticles. Nanoparticles having primary particle sizes in the range of 5–250Β nm were generated using laser ablation in three different solutions avoiding artificial chemical additives, and giving access to formulations containing nanoparticles only stabilized by biological ligands. Endothelial cells are found to be more sensitive to nanoparticle exposure than smooth muscle cells. Cobalt and Nickel nanoparticles caused the highest cytotoxicity. In contrast, Titanium, Nickel–Iron, and Nickel–Titanium nanoparticles had almost no influence on cells below a nanoparticle concentration of 10Β ΞΌM. Nanoparticles in cysteine dissolved almost completely, whereas less ions are released when nanoparticles were stabilized in water or citrate solution. Nanoparticles stabilized by cysteine caused less inhibitory effects on cells suggesting cysteine to form metal complexes with bioactive ions in media

    The Kidneys and Aldosterone/Mineralocorticoid Receptor System in Salt-Sensitive Hypertension

    Get PDF
    Strong evidence supports the ability of the aldosterone/mineralocorticoid receptor (MR) system to dominate long-term blood pressure control. It is also increasingly recognized as an important mediator of cardiovascular and renal diseases, particularly in the presence of excessive salt intake. In a subgroup of individuals with metabolic syndrome, adipocyte-derived aldosterone-releasing factors cause inappropriate secretion of aldosterone in the adrenal glands during salt loading, resulting in the development of salt-induced hypertension and cardiac and renal damage. On the other hand, emerging data reveal that aldosterone is not a sole regulator of MR activity. We have identified the signaling crosstalk between MR and small GTPase Rac1 as a novel pathway to facilitate MR signaling. Such a local control system for MR can also be relevant to the pathogenesis of salt-sensitive hypertension, and future studies will clarify the detailed mechanism for the intricate regulation of the aldosterone/MR cascade

    Dynamic Chromatin Localization of Sirt6 Shapes Stress- and Aging-Related Transcriptional Networks

    Get PDF
    The sirtuin Sirt6 is a NAD-dependent histone deacetylase that is implicated in gene regulation and lifespan control. Sirt6 can interact with the stress-responsive transcription factor NF-ΞΊB and regulate some NF-ΞΊB target genes, but the full scope of Sirt6 target genes as well as dynamics of Sirt6 occupancy on chromatin are not known. Here we map Sirt6 occupancy on mouse promoters genome-wide and show that Sirt6 occupancy is highly dynamic in response to TNF-Ξ±. More than half of Sirt6 target genes are only revealed upon stress-signaling. The majority of genes bound by NF-ΞΊB subunit RelA recruit Sirt6, and dynamic Sirt6 relocalization is largely driven in a RelA-dependent manner. Integrative analysis with global gene expression patterns in wild-type, Sirt6βˆ’/βˆ’, and double Sirt6βˆ’/βˆ’ RelAβˆ’/βˆ’ cells reveals the epistatic relationships between Sirt6 and RelA in shaping diverse temporal patterns of gene expression. Genes under the direct joint control of Sirt6 and RelA include several with prominent roles in cell senescence and organismal aging. These data suggest dynamic chromatin relocalization of Sirt6 as a key output of NF-ΞΊB signaling in stress response and aging

    Allergen-specific immunotherapy provides immediate, long-term and preventive clinical effects in children and adults: the effects of immunotherapy can be categorised by level of benefit -the centenary of allergen specific subcutaneous immunotherapy

    Get PDF
    Allergen Specific Immunotherapy (SIT) for respiratory allergic diseases is able to significantly improve symptoms as well as reduce the need for symptomatic medication, but SIT also has the capacity for long-term clinical effects and plays a protective role against the development of further allergies and symptoms. The treatment acts on basic immunological mechanisms, and has the potential to change the pathological allergic immune response. In this paper we discuss some of the most important achievements in the documentation of the benefits of immunotherapy, over the last 2 decades, which have marked a period of extensive research on the clinical effects and immunological background of the mechanisms involved. The outcome of immunotherapy is described as different levels of benefit from early reduction in symptoms over progressive clinical effects during treatment to long-term effects after discontinuation of the treatment and prevention of asthma. The efficacy of SIT increases the longer it is continued and immunological changes lead to potential long-term benefits. SIT alone and not the symptomatic treatment nor other avoidance measures has so far been documented as the therapy with long-term or preventive potential. The allergic condition is driven by a subset of T-helper lymphocytes (Th2), which are characterised by the production of cytokines like IL-4, and IL-5. Immunological changes following SIT lead to potential curative effects. One mechanism whereby immunotherapy suppresses the allergic response is through increased production of IgG4 antibodies. Induction of specific IgG4 is able to influence the allergic response in different ways and is related to immunological effector mechanisms, also responsible for the reduced late phase hyperreactivity and ongoing allergic inflammation. SIT is the only treatment which interferes with the basic pathophysiological mechanisms of the allergic disease, thereby creating the potential for changes in the long-term prognosis of respiratory allergy. SIT should not only be recognised as first-line therapeutic treatment for allergic rhinoconjunctivitis but also as secondary preventive treatment for respiratory allergic diseases

    Parvovirus Minute Virus of Mice Induces a DNA Damage Response That Facilitates Viral Replication

    Get PDF
    Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells
    • …
    corecore