120 research outputs found
IGEMS : The Consortium on Interplay of Genes and Environment Across Multiple Studies - An Update
The Interplay of Genes and Environment across Multiple Studies (IGEMS) is a consortium of 18 twin studies from 5 different countries (Sweden, Denmark, Finland, United States, and Australia) established to explore the nature of gene-environment (GE) interplay in functioning across the adult lifespan. Fifteen of the studies are longitudinal, with follow-up as long as 59 years after baseline. The combined data from over 76,000 participants aged 14-103 at intake (including over 10,000 monozygotic and over 17,000 dizygotic twin pairs) support two primary research emphases: (1) investigation of models of GE interplay of early life adversity, and social factors at micro and macro environmental levels and with diverse outcomes, including mortality, physical functioning and psychological functioning; and (2) improved understanding of risk and protective factors for dementia by incorporating unmeasured and measured genetic factors with a wide range of exposures measured in young adulthood, midlife and later life.Peer reviewe
Construction of an ~700-kb transcript map around the Familial Mediterranean Fever locus on human chromosome 16p13.3
We used a combination of cDNA selection, exon amplification, and computational prediction from genomic sequence to isolate transcribed sequences from genomic DNA surrounding the familial Mediterranean fever (FMF) locus. Eighty-seven kb of genomic DNA around D16S3370, a marker showing a high degree of linkage disequilibrium with FMF, was sequenced to completion, and the sequence annotated. A transcript map reflecting the minimal number of genes encoded within the ∼700 kb of genomic DNA surrounding the FMF locus was assembled. This map consists of 27 genes with discreet messages detectable on Northerns, in addition to three olfactory-receptor genes, a cluster of 18 tRNA genes, and two putative transcriptional units that have typical intron–exon splice junctions yet do not detect messages on Northerns. Four of the transcripts are identical to genes described previously, seven have been independently identified by the French FMF Consortium, and the others are novel. Six related zinc-finger genes, a cluster of tRNAs, and three olfactory receptors account for the majority of transcribed sequences isolated from a 315-kb FMF central region (betweenD16S468/D16S3070 and cosmid 377A12). Interspersed among them are several genes that may be important in inflammation. This transcript map not only has permitted the identification of the FMF gene (MEFV), but also has provided us an opportunity to probe the structural and functional features of this region of chromosome 16.Michael Centola, Xiaoguang Chen, Raman Sood, Zuoming Deng, Ivona Aksentijevich, Trevor Blake, Darrell O. Ricke, Xiang Chen, Geryl Wood, Nurit Zaks, Neil Richards, David Krizman, Elizabeth Mansfield, Sinoula Apostolou, Jingmei Liu, Neta Shafran, Anil Vedula, Melanie Hamon, Andrea Cercek, Tanaz Kahan, Deborah Gumucio, David F. Callen, Robert I. Richards, Robert K. Moyzis, Norman A. Doggett, Francis S. Collins, P. Paul Liu, Nathan Fischel-Ghodsian and Daniel L. Kastne
IGEMS: The Consortium on Interplay of Genes and Environment Across Multiple Studies
The Interplay of Genes and Environment across Multiple Studies (IGEMS) group is a consortium of eight longitudinal twin studies established to explore the nature of social context effects and gene-environment interplay in late-life functioning. The resulting analysis of the combined data from over 17,500 participants aged 25–102 at baseline (including nearly 2,600 monogygotic and 4,300 dizygotic twin pairs and over 1,700 family members) aims to understand why early life adversity, and social factors such as isolation and loneliness, are associated with diverse outcomes including mortality, physical functioning (health, functional ability), and psychological functioning (well-being, cognition), particularly in later life
Genetic landscape of congenital insensitivity to pain and hereditary sensory and autonomic neuropathies
Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders exclusively or predominantly affecting the sensory and autonomic neurons. Due to the rarity of the diseases and findings based mainly on single case reports or small case series, knowledge about these disorders is limited.
Here, we describe the molecular workup of a large international cohort of CIP/HSAN patients including patients from normally under-represented countries. We identify 80 previously unreported pathogenic or likely pathogenic variants in a total of 73 families in the >20 known CIP/HSAN-associated genes. The data expand the spectrum of disease-relevant alterations in CIP/HSAN, including novel variants in previously rarely recognized entities such as ATL3-, FLVCR1- and NGF-associated neuropathies and previously under-recognized mutation types such as larger deletions. In silico predictions, heterologous expression studies, segregation analyses and metabolic tests helped to overcome limitations of current variant classification schemes that often fail to categorize a variant as disease-related or benign.
The study sheds light on the genetic causes and disease-relevant changes within individual genes in CIP/HSAN. This is becoming increasingly important with emerging clinical trials investigating subtype or gene-specific treatment strategies
The evolving research agenda for paediatric tuberculosis infection
There are unique challenges facing the diagnosis and management of tuberculosis infection in children. Following exposure to an infectious tuberculosis case and subsequent infection, children frequently progress to tuberculosis disease more rapidly than adults. Increasingly, investigators recognize the concept of sub clinical disease, an entity referring to early asymptomatic disease. Our understanding of the pathogenesis of tuberculosis in children remains limited but could be improved through animal models, laboratory studies evaluating the responses of blood or respiratory samples to mycobacteria in vitro, as well as evaluating immune responses in children exposed to tuberculosis. Identifying children with sub-clinical disease, at high risk of progression to clinically apparent disease, through biomarker discover, would mean that treatment could be targeted to those most likely to benefit. These studies could be embedded in large observational or interventional cohorts. The optimization and discovery of novel treatments for tuberculosis infection in children need to account for mechanisms of action of tuberculosis drugs as well as child-specific factors including pharmacokinetics and appropriate formulations. In this article we present the result of discussions at a large international meeting and the series of research priorities that were developed
Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19
Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe
Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity
- …