3 research outputs found

    Stellar kinematics of dwarf galaxies from multi-epoch spectroscopy: application to Triangulum II

    Get PDF
    We present new MMT/Hectochelle spectroscopic measurements for 257 stars observed along the line of sight to the ultra-faint dwarf galaxy Triangulum II. Combining with results from previous Keck/DEIMOS spectroscopy, we obtain a sample that includes 16 likely members of Triangulum II, with up to 10 independent redshift measurements per star. To this multi-epoch kinematic data set we apply methodology that we develop in order to infer binary orbital parameters from sparsely sampled radial velocity curves with as few as two epochs. For a previously-identified (spatially unresolved) binary system in Tri~II, we infer an orbital solution with period 296.03.3+3.8 days296.0_{-3.3}^{+3.8} \rm~ days , semi-major axis 1.120.24+0.41 AU1.12^{+0.41}_{-0.24}\rm~AU, and a systemic velocity 380.0±1.7 km s1 -380.0 \pm 1.7 \rm~km ~s^{-1} that we then use in the analysis of Tri~II's internal kinematics. Despite this improvement in the modeling of binary star systems, the current data remain insufficient to resolve the velocity dispersion of Triangulum II. We instead find a 95% confidence upper limit of σv3.4 km s1\sigma_{v} \lesssim 3.4 \rm ~km~s^{-1}

    Multiplicity Statistics of Stars in the Sagittarius Dwarf Spheroidal Galaxy: Comparison to the Milky Way

    Full text link
    We use time-resolved spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) to examine the distribution of radial velocity (RV) variations in 249 stars identified as members of the Sagittarius (Sgr) dwarf spheroidal (dSph) galaxy by Hayes et al (2020). We select Milky Way (MW) stars that have stellar parameters (log(g)log(g), TeffT_{eff}, and [Fe/H][Fe/H]) similar to those of the Sagittarius members by means of a k-d tree of dimension 3. We find that the shape of the distribution of RV shifts in Sgr dSph stars is similar to that measured in their MW analogs, but the total fraction of RV variable stars in the Sgr dSph is larger by a factor of 2\sim 2. After ruling out other explanations for this difference, we conclude that the fraction of close binaries in the Sgr dSph is intrinsically higher than in the MW. We discuss the implications of this result for the physical processes leading to the formation of close binaries in dwarf spheroidal and spiral galaxies

    Stellar multiplicity and stellar rotation::Insights from APOGEE

    Get PDF
    We measure rotational broadening in spectra taken by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to characterise the relationship between stellar multiplicity and rotation. We create a sample of 2786 giants and 24 496 dwarfs with stellar parameters and multiple radial velocities from the APOGEE pipeline, projected rotation speeds \vsini\ determined from our own pipeline, and distances, masses, and ages measured by Sanders \& Das. We use the statistical distribution of the maximum shift in the radial velocities, \drvm, as a proxy for the close binary fraction to explore the interplay between stellar evolution, rotation, and multiplicity. Assuming that the minimum orbital period allowed is the critical period for Roche Lobe overflow and rotational synchronization, we calculate theoretical upper limits on expected \vsini\ and \drvm\ values. These expectations agree with the positive correlation between the maximum \drvm\ and \vsini\ values observed in our sample as a function of \logg. We find that the fast rotators in our sample have a high occurrence of short-period (log(P/d)4\log(P/\text{d})\lesssim 4) companions. We also find that old, rapidly-rotating main sequence stars have larger completeness-corrected close binary fractions than their younger peers. Furthermore, rapidly-rotating stars with large \drvm\ consistently show differences of 1-10 Gyr between the predicted gyrochronological and measured isochronal ages. These results point towards a link between rapid rotation and close binarity through tidal interactions. We conclude that stellar rotation is strongly correlated with stellar multiplicity in the field, and caution should be taken in the application of gyrochronology relations to cool stars.Comment: 12 pages, 9 figures; accepted by MNRA
    corecore