6 research outputs found

    Efficient and secure real-time mobile robots cooperation using visual servoing

    Get PDF
    This paper deals with the challenging problem of navigation in formation of mobiles robots fleet. For that purpose, a secure approach is used based on visual servoing to control velocities (linear and angular) of the multiple robots. To construct our system, we develop the interaction matrix which combines the moments in the image with robots velocities and we estimate the depth between each robot and the targeted object. This is done without any communication between the robots which eliminate the problem of the influence of each robot errors on the whole. For a successful visual servoing, we propose a powerful mechanism to execute safely the robots navigation, exploiting a robot accident reporting system using raspberry Pi3. In addition, in case of problem, a robot accident detection reporting system testbed is used to send an accident notification, in the form of a specifical message. Experimental results are presented using nonholonomic mobiles robots with on-board real time cameras, to show the effectiveness of the proposed method

    Energy Efficient and Safe Weighted Clustering Algorithm for Mobile Wireless Sensor Networks

    No full text
    The main concern of clustering approaches for mobile wireless sensor networks (WSNs) is to prolong the battery life of the individual sensors and the network lifetime. For a successful clustering approach the need of a powerful mechanism to safely elect a cluster head remains a challenging task in many research works that take into account the mobility of the network. The approach based on the computing of the weight of each node in the network is one of the proposed techniques to deal with this problem. In this paper, we propose an energy efficient and safe weighted clustering algorithm (ES-WCA) for mobile WSNs using a combination of five metrics. Among these metrics lies the behavioral level metric which promotes a safe choice of a cluster head in the sense where this last one will never be a malicious node. Moreover, the highlight of our work is summarized in a comprehensive strategy for monitoring the network, in order to detect and remove the malicious nodes. We use simulation study to demonstrate the performance of the proposed algorithm

    An Innovative Smart and Sustainable Low-Cost Irrigation System for Anomaly Detection Using Deep Learning

    No full text
    The agricultural sector faces several difficulties today in ensuring the safety of food supply, including water scarcity. This study presents the design and development of a low-cost and full-featured fog-IoT/AI system targeted towards smallholder farmer communities (SFCs). However, the smallholder community is hesitant to adopt technology-based solutions. There are many overwhelming reasons for this, but the high cost, implementation complexity, and malfunctioning sensors cause inappropriate decisions. The PRIMA INTEL-IRRIS project aims to make digital and innovative agricultural technologies more appealing and available to these communities by advancing the intelligent irrigation “in-the-box” concept. Considered a vital resource, collected data are used to detect anomalies or abnormal behavior, providing information about an occurrence or a node failure. To prevent agro-field data leakage, this paper presents an innovative, smart, and sustainable low-cost irrigation system that employs artificial intelligence (AI) techniques to analyze anomalies and problems in water usage. The sensor anomaly can be detected using an autoencoder (AE) and a generative adversarial network (GAN). We will feed the autoencoders’ anomaly detection models with time series records from the datasets and replace detected anomalies with the reconstructed outputs. When integrated with an IoT platform, this methodology is a tool for easing the labeling of sensor anomalies and can help create supervised datasets for future research. In addition, anomalies can be corrected by prediction models based on deep learning approaches, applying CNN/BiLSTM architecture. The results show that AEs outperform the GANs, achieving an accuracy of 90%, 95%, and 97% for soil moisture, air temperature, and air humidity, respectively. The proposed system is designed to ensure that the data are of high quality and reliable enough to make sound decisions compared to the existing platforms

    Image compression of surface defects of the hot-rolled steel strip using Principal Component Analysis

    No full text
    The quality control of steel products by human vision remains tedious, fatiguing, somewhat fast, rather robust, sketchy, dangerous or impossible. For these reasons, the use of the artificial vision in the world of quality control has become more than necessary. However, these images are often large in terms of quantity and size, which becomes a problem in quality control centers, where engineers are unable to store these images. For this, efficient compression techniques are necessary for archiving and transmitting the images. The reduction in file size allows more images to be stored in a disk or memory space. The present paper proposes an effective technique for redundancy extraction using the Principal Component Analysis (PCA) approach. Furthermore, it aims to study the effects of the number of eigenvectors employed in the PCA compression technique on the quality of the compressed image. The results revealed that using only 25% of the eigenvectors provide very similar compressed images compared to the original ones, in terms of quality. These images are characterized by high compression ratios and a small storage space
    corecore