1,885 research outputs found

    Balanced Allocation on Graphs: A Random Walk Approach

    Full text link
    In this paper we propose algorithms for allocating nn sequential balls into nn bins that are interconnected as a dd-regular nn-vertex graph GG, where d≄3d\ge3 can be any integer.Let ll be a given positive integer. In each round tt, 1≀t≀n1\le t\le n, ball tt picks a node of GG uniformly at random and performs a non-backtracking random walk of length ll from the chosen node.Then it allocates itself on one of the visited nodes with minimum load (ties are broken uniformly at random). Suppose that GG has a sufficiently large girth and d=ω(log⁥n)d=\omega(\log n). Then we establish an upper bound for the maximum number of balls at any bin after allocating nn balls by the algorithm, called {\it maximum load}, in terms of ll with high probability. We also show that the upper bound is at most an O(log⁥log⁥n)O(\log\log n) factor above the lower bound that is proved for the algorithm. In particular, we show that if we set l=⌊(log⁥n)1+Ï”2⌋l=\lfloor(\log n)^{\frac{1+\epsilon}{2}}\rfloor, for every constant ϔ∈(0,1)\epsilon\in (0, 1), and GG has girth at least ω(l)\omega(l), then the maximum load attained by the algorithm is bounded by O(1/Ï”)O(1/\epsilon) with high probability.Finally, we slightly modify the algorithm to have similar results for balanced allocation on dd-regular graph with d∈[3,O(log⁥n)]d\in[3, O(\log n)] and sufficiently large girth

    Dynamic Operational Planning in Warfare: A Stochastic Game Approach to Military Campaigns

    Full text link
    We study a two-player discounted zero-sum stochastic game model for dynamic operational planning in military campaigns. At each stage, the players manage multiple commanders who order military actions on objectives that have an open line of control. When a battle over the control of an objective occurs, its stochastic outcome depends on the actions and the enabling support provided by the control of other objectives. Each player aims to maximize the cumulative number of objectives they control, weighted by their criticality. To solve this large-scale stochastic game, we derive properties of its Markov perfect equilibria by leveraging the logistics and military operational command and control structure. We show the consequential isotonicity of the optimal value function with respect to the partially ordered state space, which in turn leads to a significant reduction of the state and action spaces. We also accelerate Shapley's value iteration algorithm by eliminating dominated actions and investigating pure equilibria of the matrix game solved at each iteration. We demonstrate the computational value of our equilibrium results on a case study that reflects representative operational-level military campaigns with geopolitical implications. Our analysis reveals a complex interplay between the game's parameters and dynamics in equilibrium, resulting in new military insights for campaign analysts

    A fluorophore attached to nicotinic acetylcholine receptor beta M2 detects productive binding of agonist to the alpha delta site

    Get PDF
    To study conformational transitions at the muscle nicotinic acetylcholine (ACh) receptor (nAChR), a rhodamine fluorophore was tethered to a Cys side chain introduced at the beta-19' position in the M2 region of the nAChR expressed in Xenopus oocytes. This procedure led to only minor changes in receptor function. During agonist application, fluorescence increased by (Delta-F/F) approximate to 10%, and the emission peak shifted to lower wavelengths, indicating a more hydrophobic environment for the fluorophore. The dose-response relations for Delta-F agreed well with those for epibatidine-induced currents, but were shifted approximate to 100-fold to the left of those for ACh-induced currents. Because (i) epibatidine binds more tightly to the alpha-gamma-binding site than to the alpha-delta site and (ii) ACh binds with reverse-site selectivity, these data suggest that Delta-F monitors an event linked to binding specifically at the alpha-delta-subunit interface. In experiments with flash-applied agonists, the earliest detectable Delta-F occurs within milliseconds, i.e., during activation. At low [ACh] (less than or equal to 10 muM), a phase of Delta-F occurs with the same time constant as desensitization, presumably monitoring an increased population of agonist-bound receptors. However, recovery from Delta-F is complete before the slowest phase of recovery from desensitization (time constant approximate to 250 s), showing that one or more desensitized states have fluorescence like that of the resting channel. That conformational transitions at the alpha-delta-binding site are not tightly coupled to channel activation suggests that sequential rather than fully concerted transitions occur during receptor gating. Thus, time-resolved fluorescence changes provide a powerful probe of nAChR conformational changes

    Noise sensitivity of an atomic velocity sensor

    Full text link
    We use Bloch oscillations to accelerate coherently Rubidium atoms. The variation of the velocity induced by this acceleration is an integer number times the recoil velocity due to the absorption of one photon. The measurement of the velocity variation is achieved using two velocity selective Raman pi-pulses: the first pulse transfers atoms from the hyperfine state 5S1/2 |F=2, mF=0> to 5S1/2, |F=1, mF = 0> into a narrow velocity class. After the acceleration of this selected atomic slice, we apply the second Raman pulse to bring the resonant atoms back to the initial state 5S1/2, |F=2, mF = 0>. The populations in (F=1 and F=2) are measured separately by using a one-dimensional time-of-flight technique. To plot the final velocity distribution we repeat this procedure by scanning the Raman beam frequency of the second pulse. This two pi-pulses system constitutes then a velocity sensor. Any noise in the relative phase shift of the Raman beams induces an error in the measured velocity. In this paper we present a theoretical and an experimental analysis of this velocity sensor, which take into account the phase fluctuations during the Raman pulses

    Dipole and Bloch oscillations of cold atoms in a parabolic lattice

    Full text link
    The paper studies the dynamics of a Bose-Einstein condensate loaded into a 1D parabolic optical lattice, and excited by a sudden shift of the lattice center. Depending on the magnitude of the initial shift, the condensate undergoes either dipole or Bloch oscillations. The effects of dephasing and of atom-atom interactions on these oscillations are discussed.Comment: 3 pages, to appear in proceeding of LPHYS'05 conference (July 4-8, 2005, Kyoto, Japan

    Loop structure of the lowest Bloch band for a Bose-Einstein condensate

    Full text link
    We investigate analytically and numerically Bloch waves for a Bose--Einstein condensate in a sinusoidal external potential. At low densities the dependence of the energy on the quasimomentum is similar to that for a single particle, but at densities greater than a critical one the lowest band becomes triple-valued near the boundary of the first Brillouin zone and develops the structure characteristic of the swallow-tail catastrophe. We comment on the experimental consequences of this behavior.Comment: 4 pages, 7 figure

    Cortical Surface Diffusion Generative Models

    Full text link
    Cortical surface analysis has gained increased prominence, given its potential implications for neurological and developmental disorders. Traditional vision diffusion models, while effective in generating natural images, present limitations in capturing intricate development patterns in neuroimaging due to limited datasets. This is particularly true for generating cortical surfaces where individual variability in cortical morphology is high, leading to an urgent need for better methods to model brain development and diverse variability inherent across different individuals. In this work, we proposed a novel diffusion model for the generation of cortical surface metrics, using modified surface vision transformers as the principal architecture. We validate our method in the developing Human Connectome Project (dHCP), the results suggest our model demonstrates superior performance in capturing the intricate details of evolving cortical surfaces. Furthermore, our model can generate high-quality realistic samples of cortical surfaces conditioned on postmenstrual age(PMA) at scan.Comment: 4 page
    • 

    corecore