34 research outputs found

    Role of the PAS sensor domains in the Bacillus subtilis sporulation kinase KinA

    Get PDF
    Histidine kinases are sophisticated molecular sensors that are used by bacteria to detect and respond to a multitude of environmental signals. KinA is the major histidine kinase required for initiation of sporulation upon nutrient deprivation in Bacillus subtilis. KinA has a large N-terminal region (residues 1 to 382) that is uniquely composed of three tandem Per-ARNT-Sim (PAS) domains that have been proposed to constitute a sensor module. To further enhance our understanding of this "sensor" region, we defined the boundaries that give rise to the minimal autonomously folded PAS domains and analyzed their homo- and heteroassociation properties using analytical ultracentrifugation, nuclear magnetic resonance (NMR) spectroscopy, and multiangle laser light scattering. We show that PAS(A) self-associates very weakly, while PAS(C) is primarily a monomer. In contrast, PAS(B) forms a stable dimer (K-d [dissociation constant] o

    Sampling circulating tumor cells for clinical benefits: how frequent?

    Get PDF
    Circulating tumor cells (CTCs) are cells shed from tumors or metastatic sites and are a potential biomarker for cancer diagnosis, management, and prognostication. The majority of current studies use single or infrequent CTC sampling points. This strategy assumes that changes in CTC number, as well as phenotypic and molecular characteristics, are gradual with time. In reality, little is known today about the actual kinetics of CTC dissemination and phenotypic and molecular changes in the blood of cancer patients. Herein, we show, using clinical case studies and hypothetical simulation models, how sub-optimal CTC sampling may result in misleading observations with clinical consequences, by missing out on significant CTC spikes that occur in between sampling times. Initial studies using highly frequent CTC sampling are necessary to understand the dynamics of CTC dissemination and phenotypic and molecular changes in the blood of cancer patients. Such an improved understanding will enable an optimal, study-specific sampling frequency to be assigned to individual research studies and clinical trials and better inform practical clinical decisions on cancer management strategies for patient benefits

    Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. <it>Herminiimonas arsenicoxydans </it>has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III) to As(V) as a detoxification mechanism.</p> <p>Results</p> <p>In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of <it>H. arsenicoxydans </it>to As(III). To get insight into the molecular mechanisms of this enzyme activity, a Tn<it>5 </it>transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted <it>aoxR </it>and <it>aoxS </it>genes, showing that the <it>aox </it>operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in <it>rpoN </it>coding for the alternative N sigma factor (σ<sup>54</sup>) of RNA polymerase and in <it>dnaJ </it>coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the <it>rpoN </it>and <it>dnaJ </it>gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the <it>aoxAB </it>operon was determined using rapid amplification of cDNA ends (RACE) and a putative -12/-24 σ<sup>54</sup>-dependent promoter motif was identified upstream of <it>aoxAB </it>coding sequences.</p> <p>Conclusion</p> <p>These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in <it>H. arsenicoxydans</it>. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III) in this microorganism.</p

    Single-cell analysis tools for drug discovery and development

    Get PDF
    The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed

    Vasculogenic mimicry in small cell lung cancer.

    Get PDF
    Small cell lung cancer (SCLC) is characterized by prevalent circulating tumour cells (CTCs), early metastasis and poor prognosis. We show that SCLC patients (37/38) have rare CTC subpopulations co-expressing vascular endothelial-cadherin (VE-cadherin) and cytokeratins consistent with vasculogenic mimicry (VM), a process whereby tumour cells form 'endothelial-like' vessels. Single-cell genomic analysis reveals characteristic SCLC genomic changes in both VE-cadherin-positive and -negative CTCs. Higher levels of VM are associated with worse overall survival in 41 limited-stage patients' biopsies (P<0.025). VM vessels are also observed in 9/10 CTC patient-derived explants (CDX), where molecular analysis of fractionated VE-cadherin-positive cells uncovered copy-number alterations and mutated TP53, confirming human tumour origin. VE-cadherin is required for VM in NCI-H446 SCLC xenografts, where VM decreases tumour latency and, despite increased cisplatin intra-tumour delivery, decreases cisplatin efficacy. The functional significance of VM in SCLC suggests VM regulation may provide new targets for therapeutic intervention
    corecore