26 research outputs found

    Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-ß receptor tyrosine kinase signaling

    Get PDF
    The inhibitory reversible oxidation of protein tyrosine phosphatases (PTPs) is an important regulatory mechanism in growth factor signaling. Studies on PTP oxidation have focused on pathways that increase or decrease reactive oxygen species levels and thereby affect PTP oxidation. The processes involved in reactivation of oxidized PTPs remain largely unknown. Here the role of the thioredoxin (Trx) system in reactivation of oxidized PTPs was analyzed using a combination of in vitro and cell-based assays. Cells lacking the major Trx reductase TrxR1 (Txnrd1-/-) displayed increased oxidation of PTP1B, whereas SHP2 oxidation was unchanged. Furthermore, in vivo-oxidized PTP1B was reduced by exogenously added Trx system components, whereas SHP2 oxidation remained unchanged. Trx1 reduced oxidized PTP1B in vitro but failed to reactivate oxidized SHP2. Interestingly, the alternative TrxR1 substrate TRP14 also reactivated oxidized PTP1B, but not SHP2. Txnrd1-depleted cells displayed increased phosphorylation of PDGF-ß receptor, and an enhanced mitogenic response, after PDGF-BB stimulation. The TrxR inhibitor auranofin also increased PDGF-ß receptor phosphorylation. This effect was not observed in cells specifically lacking PTP1B. Together these results demonstrate that the Trx system, including both Trx1 and TRP14, impacts differentially on the oxidation of individual PTPs, with a preference of PTP1B over SHP2 activation. The studies demonstrate a previously unrecognized pathway for selective redox-regulated control of receptor tyrosine kinase signaling

    Neurotrophins and neurotrophin receptors in pulmonary sarcoidosis - granulomas as a source of expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary sarcoidosis is an inflammatory disease, characterized by an accumulation of CD4<sup>+ </sup>lymphocytes and the formation of non-caseating epithelioid cell granulomas in the lungs. The disease either resolves spontaneously or develops into a chronic disease with fibrosis. The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been suggested to be important mediators of inflammation and mediate tissue remodelling. In support of this, we have recently reported enhanced NGF levels in the airways of patients with pulmonary sarcoidosis. However, less is known about levels of BDNF and NT-3, and moreover, knowledge in the cellular sources of neurotrophins and the distribution of the corresponding neurotrophin receptors in airway tissue in sarcoidosis is lacking.</p> <p>Methods</p> <p>The concentrations of NGF, BDNF and NT-3 in bronchoalveolar lavage fluid (BALF) of 41 patients with newly diagnosed pulmonary sarcoidosis and 27 healthy controls were determined with ELISA. The localization of neurotrophins and neurotrophin receptors were examined by immunohistochemistry on transbronchial lung biopsies from sarcoidosis patients.</p> <p>Results</p> <p>The sarcoidosis patients showed significantly enhanced NT-3 and NGF levels in BALF, whereas BDNF was undetectable in both patients and controls. NT-3 levels in BALF were found higher in patients with non-Löfgren sarcoidosis as compared to patients with Löfgren's syndrome, and in more advanced disease stage. Epithelioid cells and multinucleated giant cells within the sarcoid granulomas showed marked immunoreactivity for NGF, BDNF and NT-3. Also, immunoreactivity for the neurotrophin receptor TrkA, TrkB and TrkC, was found within the granulomas. In addition, alveolar macrophages showed positive immunoreactivity for NGF, BDNF and NT-3 as well as for TrkA, TrkB and TrkC.</p> <p>Conclusions</p> <p>This study provides evidence of enhanced neurotrophin levels locally within the airways of patients with sarcoidosis. Findings suggest that sarcoid granuloma cells and alveolar macrophages are possible cellular sources of, as well as targets for, neurotrophins in the airways of these patients.</p

    The mitochondrial reactive oxygen species regulator p66Shc controls PDGF-induced signaling and migration through protein tyrosine phosphatase oxidation

    No full text
    Growth factor receptors induce a transient increase in reactive oxygen species (ROS) levels upon receptor binding to promote signaling through oxidation of protein tyrosine phosphatases (PTPs). Most studies have focused on NADPH oxidases as the dominant source of ROS to induce PTP oxidation. A potential additional regulator of growth factor-induced PTP oxidation is p66Shc, which stimulates mitochondrial ROS production. This study explores the contribution of p66Shc-induced ROS to PTP oxidation and growth factor receptor-induced signaling and migration through analyses of p66Shc-KO fibroblasts and cells with siRNA-mediated p66Shc downregulation. Analyses of PDGFβR phosphorylation in two independent cell systems demonstrated a decrease in PDGFβR phosphorylation after p66Shc deletion or downregulation, which occurred in a partially site-selective and antioxidant-sensitive manner. Deletion of p66Shc also reduced PDGF-induced activation of downstream signaling of Erk, Akt, PLCγ-1, and FAK. Importantly, reduced levels of p66Shc led to decreased oxidation of DEP1, PTP1B, and SHP2 after PDGF stimulation. The cell biological relevance of these findings was indicated by demonstration of a significantly reduced migratory response in PDGF-stimulated p66Shc-KO fibroblasts, consistent with reduced PDGFβR-Y1021 and PLCγ-1 phosphorylation. Downregulation of p66Shc also reduced EGFR phosphorylation and signaling, indicating that the positive role of p66Shc in receptor tyrosine kinase signaling is potentially general. Moreover, downregulation of the mitochondrial hydrogen peroxide scavenger peroxiredoxin 3 increased PDGFβR phosphorylation, showing that mitochondrial ROS in general promote PDGFβR signaling. This study thus identifies a previously unrecognized role for p66Shc in the regulation of PTP oxidation controlling growth factor-induced signaling and migration. In more general terms, the study indicates a regulatory role for mitochondrial-derived ROS in the control of PTP oxidation influencing growth factor signaling. © 2013 Elsevier Inc

    Finding the right place to grow older: Improving housing choices for older people

    No full text
    This report - Finding the rightplace to grow older - investigates how we can better understand the difficulties faced by over 4 million older people actively seeking to move home to improve their quality of life. It explores how housing strategies can be made more responsive to local circumstances and personal experiences, so that we can close the ‘rightsizing’ gap by improving the housing choices that older people have where they live. This research was commissioned by The Centre for Ageing Better, working with the Greater Manchester Combined Authority (GMCA) and their Housing, Planning and Ageing group

    Irreversible TrxR1 inhibitors block STAT3 activity and induce cancer cell death

    No full text
    Because of its key role in cancer development and progression, STAT3 has become an attractive target for developing new cancer therapeutics. While several STAT3 inhibitors have progressed to advanced stages of development, their underlying biology and mechanisms of action are often more complex than would be expected from specific binding to STAT3. Here, we have identified and optimized a series of compounds that block STAT3-dependent luciferase expression with nanomolar potency. Unexpectedly, our lead compounds did not bind to cellular STAT3 but to another prominent anticancer drug target, TrxR1. We further identified that TrxR1 inhibition induced Prx2 and STAT3 oxidation, which subsequently blocked STAT3-dependent transcription. Moreover, previously identified inhibitors of STAT3 were also found to inhibit TrxR1, and likewise, established TrxR1 inhibitors block STAT3-dependent transcriptional activity. These results provide new insights into the complexities of STAT3 redox regulation while highlighting a novel mechanism to block aberrant STAT3 signaling in cancer cells
    corecore