6 research outputs found

    Application of PCR-DGGE for the identification of lactic acid bacteria in acitve dry wine yeasts

    Get PDF
    In this work a Polymerase Chain Reaction (PCR)-Denaturing Gradient Gel Electrophoresis (DGGE) protocol was used to identify the Lactic Acid Bacteria (LAB) contaminants in enological active dry yeasts routinely used in the wine production. The method is based on the PCR amplification of a DNA fragment from the region V1 of 16S rDNA gene followed by a DGGE technique. The main contaminant wasLactobacillus spp. andPediococcus spp

    Yeast Aquaglyceroporins Use the Transmembrane Core to Restrict Glycerol Transport

    No full text
    Aquaglyceroporins are transmembrane proteins belonging to the family of aquaporins, which facilitate the passage of specific uncharged solutes across membranes of cells. The yeast aquaglyceroporin Fps1 is important for osmoadaptation by regulating intracellular glycerol levels during changes in external osmolarity. Upon high osmolarity conditions, yeast accumulates glycerol by increased production of the osmolyte and by restricting glycerol efflux through Fps1. The extended cytosolic termini of Fps1 contain short domains that are important for regulating glycerol flux through the channel. Here we show that the transmembrane core of the protein plays an equally important role. The evidence is based on results from an intragenic suppressor mutation screen and domain swapping between the regulated variant of Fps1 from Saccharomyces cerevisiae and the hyperactive Fps1 ortholog from Ashbya gossypii. This suggests a novel mechanism for regulation of glycerol flux in yeast, where the termini alone are not sufficient to restrict Fps1 transport. We propose that glycerol flux through the channel is regulated by interplay between the transmembrane helices and the termini. This mechanism enables yeast cells to fine-tune intracellular glycerol levels at a wide range of extracellular osmolarities

    Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery.

    No full text
    The control of activity and localization of transcription factors is critical for appropriate transcriptional responses. In eukaryotes, signal transduction components such as mitogen-activated protein kinase (MAPK) shuttle into the nucleus to activate transcription. It is not known in detail how different amounts of nuclear MAPK over time affect the transcriptional response. In the present study, we aimed to address this issue by studying the high osmolarity glycerol (HOG) system in Saccharomyces cerevisiae. We employed a conditional osmotic system, which changes the period of the MAPK Hog1 signal independent of the initial stress level. We determined the dynamics of the Hog1 nuclear localization and cell volume by single-cell analysis in well-controlled microfluidics systems and compared the responses with the global transcriptional output of cell populations. We discovered that the onset of the initial transcriptional response correlates with the potential of cells for rapid adaptation; cells that are capable of recovering quickly initiate the transcriptional responses immediately, whereas cells that require longer time to adapt also respond later. This is reflected by Hog1 nuclear localization, Hog1 promoter association and the transcriptional response, but not Hog1 phosphorylation, suggesting that a presently uncharacterized rapid adaptive mechanism precedes the Hog1 nuclear response. Furthermore, we found that the period of Hog1 nuclear residence affects the amplitude of the transcriptional response rather than the spectrum of responsive genes
    corecore