19 research outputs found

    Alteration in lipoprotein-associated phospholipase A2 levels during acute coronary syndrome and its relationship to standard biomarkers

    No full text
    Abstract Background Lipoprotein-associated phospholipase A2 (Lp-PLA2) probably plays an important role in the development of acute coronary syndrome (ACS); elevated levels of Lp-PLA2 are associated with a poorer prognosis in patients with ischemic heart disease. Alterations of Lp-PLA2 levels during ACS and its relationship to standard biomarkers are, however, unclear. Findings Fifty-one consecutive ACS patients were enrolled in the study. All were managed with early invasive strategy and according to the current guidelines for pharmacotherapy; intensive statin therapy was started in all patients at admission. Serum levels of Lp-PLA2, LDL-cholesterol (LDL), troponin l (Tnl), and C-reactive protein (CRP) were assessed at admission (D0), on the first morning (D1), and on the second morning of hospitalization (D2). Mean serum levels of Lp-PLA2 (ng/mL) decreased from 264.6±19.1 at D0, to 193.2±14.4 at D1 (P P = 0.002 vs. D0; P = not significant vs. D1). Alterations in Lp-PLA2 levels significantly correlated with changes in LDL (r = 0.43; P = 0.008). On the other hand, no relationship between Lp-PLA2 and Tnl or CRP was found. Conclusions Initially, serum levels of Lp-PLA2 were significantly elevated in ACS patients, but decreased within the first 24 hours after admission and subsequently remained stable. Lp-PLA2 levels correlated with LDL levels but not with Tnl or CRP levels. Our results demonstrated dynamic alterations in Lp-PLA2 levels during the early stages of ACS and, therefore, indirectly support the hypothesis of an active role for Lp-PLA2 in the pathogenesis of ACS.</p

    Association of neuron-specific enolase values with outcomes in cardiac arrest survivors is dependent on the time of sample collection

    No full text
    Abstract Background Despite marked advances in intensive cardiology care, current options for outcome prediction in cardiac arrest survivors remain significantly limited. The aim of our study was, therefore, to compare the day-specific association of neuron-specific enolase (NSE) with outcomes in out-of-hospital cardiac arrest (OHCA) survivors treated with hypothermia. Methods Eligible patients were OHCA survivors treated with targeted temperature management at 33 °C for 24 h using an endovascular device. Blood samples for NSE levels measurement were drawn on days 1, 2, 3, and 4 after hospital admission. Thirty-day neurological outcomes according to the Cerebral Performance Category (CPC) scale and 12-month mortality were evaluated as clinical end points. Results A total of 153 cardiac arrest survivors (mean age 64.2 years) were enrolled in the present study. Using ROC analysis, optimal cutoff values of NSE for prediction of CPC 3–5 score on specific days were determined as: day 1 > 20.4 mcg/L (sensitivity 63.3%; specificity 82.1%; P = 0.002); day 2 > 29.0 mcg/L (72.5%; 94.4%; P  20.7 mcg/L (94.4%; 86.7%; P  19.4 mcg/L (93.5%; 91.0%; P 50.2 mcg/L at day 4 was associated with poor outcome with 100% specificity and 42% sensitivity. Moreover, NSE levels measured on all individual days also predicted 12-month mortality (P  18.1 mcg/L (85.3%; 72.0%; P  20.0 mcg/L, together with a change > 0.0 mcg/L from day 3 to day 4, predicted poor outcome (CPC 3–5) with 100% specificity and 73% sensitivity. Conclusions Our results suggest that NSE levels are a useful tool for predicting 30-day neurological outcome and long-term mortality in OHCA survivors treated with targeted temperature management at 33 °C. The highest associations of NSE with outcomes were observed on day 4 and day 3 after cardiac arrest

    A Total of 207 Days of Veno-Venous Extracorporeal Membrane Oxygenation Support for Severe COVID-19 Prior to Successful Lung Transplantation: A Case Report

    No full text
    Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is a life-saving treatment for respiratory failure that may serve as a bridge to patient recovery or lung transplantation. In COVID-19, recovery is somewhat unpredictable and occasionally occurs after &gt;100 days on VV-ECMO support. Thus, determining therapy cessation may be difficult. We report the case of a 59-year-old male without specific risk factors admitted to a tertiary center for rapidly progressive respiratory failure due to severe COVID-19, despite aggressive mechanical ventilatory support. Immediate insertion of VV-ECMO was associated with prompt resolution of hypoxemia and hypercapnia; however, all therapeutic efforts to wean the patient from VV-ECMO failed. During the prolonged hospitalization on VV-ECMO, sepsis was the most life-threatening complication. The patient overcame roughly 40 superinfections, predominantly affecting the respiratory tract, and spent 183 days on antimicrobial treatment. Although the function of other organ systems was generally stable, gradually progressive right ventricular dysfunction due to precapillary pulmonary hypertension required increasing doses of inotropes. A successful lung transplantation was performed after 207 days of VV-ECMO support. The present case provides evidence for prolonged VV-ECMO therapy as a bridge to lung transplantation in severe COVID-19 despite numerous, predominantly infectious complications

    Acute Severe Heart Failure Reduces Heart Rate Variability: An Experimental Study in a Porcine Model

    No full text
    There are substantial differences in autonomic nervous system activation among heart (cardiac) failure (CF) patients. The effect of acute CF on autonomic function has not been well explored. The aim of our study was to assess the effect of experimental acute CF on heart rate variability (HRV). Twenty-four female pigs with a mean body weight of 45 kg were used. Acute severe CF was induced by global myocardial hypoxia. In each subject, two 5-min electrocardiogram segments were analyzed and compared: before the induction of myocardial hypoxia and >60 min after the development of severe CF. HRV was assessed by time-domain, frequency-domain and nonlinear analytic methods. The induction of acute CF led to a significant decrease in cardiac output, left ventricular ejection fraction and an increase in heart rate. The development of acute CF was associated with a significant reduction in the standard deviation of intervals between normal beats (50.8 [20.5–88.1] ms versus 5.9 [2.4–11.7] ms, p < 0.001). Uniform HRV reduction was also observed in other time-domain and major nonlinear analytic methods. Similarly, frequency-domain HRV parameters were significantly changed. Acute severe CF induced by global myocardial hypoxia is associated with a significant reduction in HRV

    Prognostic value of NT-proBNP added to clinical parameters to predict two-year prognosis of chronic heart failure patients with mid-range and reduced ejection fraction - A report from FAR NHL prospective registry.

    No full text
    BACKGROUND:According to guidelines, the prognosis of patients with chronic heart failure can be predicted by determining the levels of natriuretic peptides, the NYHA classification and comorbidities. The aim our work was to develop a prognostic score in chronic heart failure patients that would take account of patients' comorbidities, NYHA and NT-proBNP levels. METHODS AND RESULTS:A total of 1,088 patients with chronic heart failure with reduced ejection fraction (HFrEF) (LVEF1000 ng/L respectively. Discrimination abilities of NYHA and NT-proBNP were AUC 0.670 (p40 mg daily) (AUC 0.773; p<0.001) was increased by adding the NT-proBNP level (AUC 0.790). CONCLUSION:The use of prediction models in patients with chronic heart failure, namely those taking account of natriuretic peptides, should become a standard in routine clinical practice. It might contribute to a better identification of a high-risk group of patients in which more intense treatment needs to be considered, such as heart transplantation or LVAD implantation

    Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock

    No full text
    <div><p>Introduction</p><p>Veno-arterial extracorporeal life support (ECLS) is increasingly being used to treat rapidly progressing or severe cardiogenic shock. However, it has been repeatedly shown that increased afterload associated with ECLS significantly diminishes left ventricular (LV) performance. The objective of the present study was to compare LV function and coronary flow during standard continuous-flow ECLS support and electrocardiogram (ECG)-synchronized pulsatile ECLS flow in a porcine model of cardiogenic shock.</p><p>Methods</p><p>Sixteen female swine (mean body weight 45 kg) underwent ECLS implantation under general anesthesia and artificial ventilation. Subsequently, acute cardiogenic shock, with documented signs of tissue hypoperfusion, was induced by initiating global myocardial hypoxia. Hemodynamic cardiac performance variables and coronary flow were then measured at different rates of continuous or pulsatile ECLS flow (ranging from 1 L/min to 4 L/min) using arterial and venous catheters, a pulmonary artery catheter, an LV pressure-volume loop catheter, and a Doppler coronary guide-wire.</p><p>Results</p><p>Myocardial hypoxia resulted in declines in mean cardiac output to 1.7±0.7 L/min, systolic blood pressure to 64±22 mmHg, and LV ejection fraction (LVEF) to 22±7%. Synchronized pulsatile flow was associated with a significant reduction in LV end-systolic volume by 6.2 mL (6.7%), an increase in LV stroke volume by 5.0 mL (17.4%), higher LVEF by 4.5% (18.8% relative), cardiac output by 0.37 L/min (17.1%), and mean arterial pressure by 3.0 mmHg (5.5%) when compared with continuous ECLS flow at all ECLS flow rates (P<0.05). At selected ECLS flow rates, pulsatile flow also reduced LV end-diastolic pressure, end-diastolic volume, and systolic pressure. ECG-synchronized pulsatile flow was also associated with significantly increased (7% to 22%) coronary flow at all ECLS flow rates.</p><p>Conclusion</p><p>ECG-synchronized pulsatile ECLS flow preserved LV function and coronary flow compared with standard continuous-flow ECLS in a porcine model of cardiogenic shock.</p></div
    corecore