13 research outputs found

    Metabolomic Recovery as a Result of Ischemic Preconditioning Was More Pronounced in Hippocampus than in Cortex That Appeared More Sensitive to Metabolomic Blood Components

    No full text
    The study of an organism’s response to ischemia at different levels is essential to understand the mechanism of the injury as well as protection. We used the occlusion of four vessels as an animal model of global cerebral ischemia to investigate metabolic alterations in cerebral cortex, hippocampus, blood plasma, as well as in a remote organ, the heart, in rats undergoing 24 h postischemic reperfusion. By inducing sublethal ischemic stimuli, we focused on endogenous phenomena known as ischemic tolerance that is currently the best known and most effective way of protecting against ischemic injury. NMR spectroscopy was used to analyze relative metabolite levels in homogenates from rats’ cerebral cortex, hippocampus, and heart together with deproteinized blood plasma. In individual animals subjected to global cerebral ischemia, relative concentrations of the essential amino acids isoleucine, valine, phenylalanine, and tyrosine in cerebral cortex correlated with those in blood plasma (p < 0.05, or boundary significant p < 0.09). This did not apply for the hippocampus, suggesting a closer relation between ischemic cortex and metabolomic blood components. Hippocampal non-participation on correlation with blood components may emphasize the observed partial or full normalization the post-ischemically altered levels of a number of metabolites in the preconditioned animals. Remarkably, that was observed for cortex to a lesser extent. As a response to the global cerebral ischemia in heart tissue, we observed decreased glutamate and increased 3-hydroxybutyrate. Ischemically induced semi-ketotic state and other changes found in blood plasma partially normalized when ischemic preconditioning was introduced. Some metabolomic changes were so strong that even individual metabolites were able to differentiate between ischemic, ischemically preconditioned, and control brain tissues

    Effect of Methionine Diet on Time-Related Metabolic and Histopathological Changes of Rat Hippocampus in the Model of Global Brain Ischemia

    No full text
    Hyperhomocysteinemia (hHcy) represents a strong risk factor for atherosclerosis-associated diseases, like stroke, dementia or Alzheimer’s disease. A methionine (Met)-rich diet leads to an elevated level of homocysteine in plasma and might cause pathological alterations across the brain. The hippocampus is being constantly studied for its selective vulnerability linked with neurodegeneration. This study explores metabolic and histo-morphological changes in the rat hippocampus after global ischemia in the hHcy conditions using a combination of proton magnetic resonance spectroscopy and magnetic resonance-volumetry as well as immunohistochemical analysis. After 4 weeks of a Met-enriched diet at a dose of 2 g/kg of animal weight/day, adult male Wistar rats underwent 4-vessel occlusion lasting for 15 min, followed by a reperfusion period varying from 3 to 7 days. Histo-morphological analyses showed that the subsequent ischemia-reperfusion insult (IRI) aggravates the extent of the sole hHcy-induced degeneration of the hippocampal neurons. Decreased volume in the grey matter, extensive changes in the metabolic ratio, deeper alterations in the number and morphology of neurons, astrocytes and their processes were demonstrated in the hippocampus 7 days post-ischemia in the hHcy animals. Our results suggest that the combination of the two risk factors (hHcy and IRI) endorses and exacerbates the rat hippocampal neurodegenerative processes

    Alzheimer’s Disease-like Pathological Features in the Dorsal Hippocampus of Wild-Type Rats Subjected to Methionine-Diet-Evoked Mild Hyperhomocysteinaemia

    No full text
    Multifactorial interactions, including nutritional state, likely participate in neurodegeneration’s pathogenesis and evolution. Dysregulation in methionine (Met) metabolism could lead to the development of hyperhomocysteinaemia (hHcy), playing an important role in neuronal dysfunction, which could potentially lead to the development of Alzheimer’s disease (AD)-like pathological features. This study combines proton magnetic resonance spectroscopy (1H MRS) with immunohistochemical analysis to examine changes in the metabolic ratio and histomorphological alterations in the dorsal rat hippocampus (dentate gyrus—DG) subjected to a high Met diet. Male Wistar rats (420–480 g) underwent hHcy evoked by a Met-enriched diet (2 g/kg of weight/day) lasting four weeks. Changes in the metabolic ratio profile and significant histomorphological alterations have been found in the DG of hHcy rats. We have detected increased morphologically changed neurons and glial cells with increased neurogenic markers and apolipoprotein E positivity parallel with a diminished immunosignal for the N-Methyl-D-Aspartate receptor 1 in hHcy animals. A Met diet induced hHcy, likely via direct Hcy neurotoxicity, an interference with one carbon unit metabolism, and/or epigenetic regulation. These conditions lead to the progression of neurodegeneration and the promotion of AD-like pathological features in the less vulnerable hippocampal DG, which presents a plausible therapeutic target

    Methionine Diet Evoked Hyperhomocysteinemia Causes Hippocampal Alterations, Metabolomics Plasma Changes and Behavioral Pattern in Wild Type Rats

    No full text
    L-methionine, an essential amino acid, plays a critical role in cell physiology. High intake and/or dysregulation in methionine (Met) metabolism results in accumulation of its intermediate(s) or breakdown products in plasma, including homocysteine (Hcy). High level of Hcy in plasma, hyperhomocysteinemia (hHcy), is considered to be an independent risk factor for cerebrovascular diseases, stroke and dementias. To evoke a mild hHcy in adult male Wistar rats we used an enriched Met diet at a dose of 2 g/kg of animal weight/day in duration of 4 weeks. The study contributes to the exploration of the impact of Met enriched diet inducing mild hHcy on nervous tissue by detecting the histo-morphological, metabolomic and behavioural alterations. We found an altered plasma metabolomic profile, modified spatial and learning memory acquisition as well as remarkable histo-morphological changes such as a decrease in neurons’ vitality, alterations in the morphology of neurons in the selective vulnerable hippocampal CA 1 area of animals treated with Met enriched diet. Results of these approaches suggest that the mild hHcy alters plasma metabolome and behavioural and histo-morphological patterns in rats, likely due to the potential Met induced changes in “methylation index” of hippocampal brain area, which eventually aggravates the noxious effect of high methionine intake

    Role of homocysteine in the ischemic stroke nad development of ischemic tolerance

    No full text
    Homocysteine (Hcy) is a toxic, sulfur-containing intermediate of methionine metabolism. Hyperhomocysteinemia (hHcy), as a consequence of impaired Hcy metabolism or defects in crucial co-factors that participate in its recycling, is assumed as an independent human stroke risk factor. Neural cells are sensitive to prolonged hHcy treatment, because Hcy cannot be metabolized either by the transsulfuration pathway or by the folate/vitamin B12 independent remethylation pathway. Its detrimental effect after ischemia-induced damage includes accumulation of reactive oxygen species (ROS) and posttranslational modifications of proteins via homocysteinylation and thiolation. Ischemic preconditioning (IPC) is an adaptive response of the CNS to sub-lethal ischemia, which elevates tissues tolerance to subsequent ischemia. The main focus of this review is on the recent data on homocysteine metabolism and mechanisms of its neurotoxicity. In this context, the review documents an increased oxidative stress and functional modification of enzymes involved in redox balance in experimentally induced hyperhomocysteinemia. It also gives an interpretation whether hyperhomocysteinemia alone or in combination with IPC affects the ischemia-induced neurodegenerative changes as well as intracellular signalling. Studies document that hHcy alone significantly increased Fluoro-Jade C- and TUNEL-positive cell neurodegeneration in the rat hippocampus as well as in the cortex. IPC, even if combined with hHcy, could still preserve the neuronal tissue from the lethal ischemic effects. This review also describes the changes in the mitogen-activated protein kinase (MAPK) protein pathways following ischemic injury and IPC. These studies provide evidence for the interplay and tight integration between ERK and p38 MAPK signalling mechanisms in response to the hHcy and also in association of hHcy with ischemia/IPC challenge in the rat brain. Further investigations of the protective factors leading to ischemic tolerance and recognition of the co-morbid risk factors would result in development of new avenues for exploration of novel therapeutics against ischmia and stroke

    Metabolic Changes Induced by Cerebral Ischemia, the Effect of Ischemic Preconditioning, and Hyperhomocysteinemia

    No full text
    1H Nuclear Magnetic Resonance (NMR) metabolomics is one of the fundamental tools in the fast-developing metabolomics field. It identifies and quantifies the most abundant metabolites, alterations of which can describe energy metabolism, activated immune response, protein synthesis and catabolism, neurotransmission, and many other factors. This paper summarizes our results of the 1H NMR metabolomics approach to characterize the distribution of relevant metabolites and their alterations induced by cerebral ischemic injury or its combination with hyperhomocysteinemia in the affected tissue and blood plasma in rodents. A decrease in the neurotransmitter pool in the brain tissue likely follows the disordered feasibility of post-ischemic neurotransmission. This decline is balanced by the increased tissue glutamine level with the detected impact on neuronal health. The ischemic injury was also manifested in the metabolomic alterations in blood plasma with the decreased levels of glycolytic intermediates, as well as a post-ischemically induced ketosis-like state with increased plasma ketone bodies. As the 3-hydroxybutyrate can act as a likely neuroprotectant, its post-ischemic increase can suggest its supporting role in balancing ischemic metabolic dysregulation. Furthermore, the 1H NMR approach revealed post-ischemically increased 3-hydroxybutyrate in the remote organs, such as the liver and heart, as well as decreased myocardial glutamate. Ischemic preconditioning, as a proposed protective strategy, was manifested in a lower extent of metabolomic changes and/or their faster recovery in a longitudinal study. The paper also summarizes the pre- and post-ischemic metabolomic changes in the rat hyperhomocysteinemic models. Animals are challenged with hyperglycemia and ketosis-like state. A decrease in several amino acids in plasma follows the onset and progression of hippocampal neuropathology when combined with ischemic injury. The 1H NMR metabolomics approach also offers a high potential for metabolites in discriminatory analysis in the search for potential biomarkers of ischemic injury. Based on our results and the literature data, this paper presents valuable findings applicable in clinical studies and suggests the precaution of a high protein diet, especially foods which are high in Met content and low in B vitamins, in the possible risk of human cerebrovascular neuropathology

    Effects of Green Tea Polyphenol Epigallocatechin-3-Gallate on Markers of Inflammation and Fibrosis in a Rat Model of Pulmonary Silicosis

    No full text
    Inhalation of silica particles causes inflammatory changes leading to fibrotizing silicosis. Considering a lack of effective therapy, and a growing information on the wide actions of green tea polyphenols, particularly epigallocatechin-3-gallate (EGCG), the aim of this study was to evaluate the early effects of EGCG on markers of inflammation and lung fibrosis in silicotic rats. The silicosis model was induced by a single transoral intratracheal instillation of silica (50 mg/mL/animal), while controls received an equivalent volume of saline. The treatment with intraperitoneal EGCG (20 mg/kg, or saline in controls) was initiated the next day after silica instillation and was given twice a week. Animals were euthanized 14 or 28 days after the treatment onset, and the total and differential counts of leukocytes in the blood and bronchoalveolar lavage fluid (BALF), wet/dry lung weight ratio, and markers of inflammation, oxidative stress, and fibrosis in the lung were determined. The presence of collagen and smooth muscle mass in the walls of bronchioles and lung vessels was investigated immunohistochemically. Early treatment with EGCG showed some potential to alleviate inflammation, and a trend to decrease oxidative stress-induced changes, including apoptosis, and a prevention of fibrotic changes in the bronchioles and pulmonary vessels. However, further investigations should be undertaken to elucidate the effects of EGCG in the lung silicosis model in more detail. In addition, because of insufficient data from EGCG delivery in silicosis, the positive and eventual adverse effects of this herbal compound should be carefully studied before any preventive use or therapy with EGCG may be recommended
    corecore