4 research outputs found

    Theorical study on mechanical properties of AZ31B Magnesium alloy Sheets under multiaxial loading

    Get PDF
    Numerical simulation by plastic deformation of the shaping processes currently has a large industrial interest. It allows you to shorten the time of design and construction related products and tools to analyze and to optimize processes. An essential part of simulation tools is the constitutive law used to describe the material used. The activity of characterization and modeling of material behavior of the plastic deformation shaping remains a very important research field of activity; the objective of proposing laws of behavior used in computer codes, essentially based on finite element is sufficiently to represent the real behavior of materials. Considering the nature of the materials used and the stresses they experience the behavior laws account for several requirements which make them increasingly complicated. Among these requirements, we cite in particular plastic anisotropy, the great transformations, the complexity and diversity of loads, etc. The complexity of these laws makes them more difficult to implement and in particular to identify: the classic tests are no longer sufficient for identification. The objective of this work is based on two essential points: Suggest a construction strategy, particularly of identifying laws elastoplastic behavior anisotropic operational for the numerical simulation of plastic deformation shaping processes with particular attention to sheet metal magnesium. Magnesium sheet metal manufacturing process involves rolling operation. In a cost-cutting goal, this operation now takes place cold, implying a very marked anisotropy of the material at the output of the mill.&nbsp

    Experimental and numerical study on mechanical properties of aluminum alloy under uniaxial tensile test

    Get PDF
    The main objective is to model the behavior of 7075 aluminum alloy and built an experimental database to identify the model parameters. The first part of the paper presents an experimental database on 7075 aluminum alloy. Thus, uniaxial tensile tests are carried in three loading directions relative to the rolling direction, knowing that the fatigue of aircraft structures is traditionally managed based on the assumption of uniaxial loads. From experimental database, the mechanical properties are extracted, particularly the various fractures owing to pronounced anisotropy relating to material. In second part, plastic anisotropy is then modeled using the identification strategy which depends on yield criteria, hardening law and evolution law. In third part, a comparison with experimental data shows that behavior model can successfully describe the anisotropy of the Lankford coefficient

    Identification strategy of anisotropic behavior laws: application to thin sheets of Aluminium A5

    No full text
    Numerical simulation provides a valuable assistance in the controlling of forming processes. The elasto-plastic orthotropic constitutive law is based on the choice of an equivalent stress, a hardening law and a plastic potential. An identification of the model parameters from an experimental database is developed. This database consists in hardening curves and Lankford coefficients of specimens subjected to off-axis tensile tests. The proposed identification strategy is applied to aluminum sheets. The behavior of this material is studied under several solicitations. The anisotropic behavior of the aluminum plate is modeled using the Barlat criterionand the hardening law. The obtained Lankford coefficients are compared to those which are identified by a different strategy

    Experimental and numerical study on mechanical properties of aluminum alloy under uniaxial tensile test

    No full text
    The main objective is to model the behavior of 7075 aluminum alloy and built an experimental database to identify the model parameters. The first part of the paper presents an experimental database on 7075 aluminum alloy. Thus, uniaxial tensile tests are carried in three loading directions relative to the rolling direction, knowing that the fatigue of aircraft structures is traditionally managed based on the assumption of uniaxial loads. From experimental database, the mechanical properties are extracted, particularly the various fractures owing to pronounced anisotropy relating to material. In second part, plastic anisotropy is then modeled using the identification strategy which depends on yield criteria, hardening law and evolution law. In third part, a comparison with experimental data shows that behavior model can successfully describe the anisotropy of the Lankford coefficient
    corecore