8 research outputs found

    Ultrathin, polarization-independent, and focus-tunable liquid crystal diffractive lens for augmented reality

    Full text link
    Despite the recent advances in augmented reality (AR), which has shown the potential to significantly impact on our daily lives by offering a new way to manipulate and interact with virtual information, minimizing visual discomfort due to the vergence-accommodation conflict remains a challenge. Emerging AR technologies often exploit focus-tunable optics to address this problem. Although they demonstrated improved depth perception by enabling proper focus cues, a bulky form factor of focus-tunable optics prevents their use in the form of a pair of eyeglasses. Herein, we describe an ultrathin, focus-tunable liquid crystal (LC) diffractive lens with a large aperture, a low weight, and a low operating voltage. In addition, we show that the polarization dependence of the lens, which is an inherent optical property of LC lenses, can be eliminated using birefringent thin films as substrates and by aligning the optical axes of the birefringent substrates and LC at a specific angle. The polarization independence eliminates the need for a polarizer, thus further reducing the form factor of the optical system. Next, we demonstrate a prototype of AR glasses with addressable focal planes using the ultrathin lens. The prototype AR glasses can adjust the accommodation distance of the virtual image, mitigating the vergence-accommodation conflict without substantially compromising the form factor or image quality. This research on ultrathin lens technology shows promising potential for developing compact optical displays in various applications.Comment: 23 pages, 9 figure

    Anti-inflammatory activity of hydrosols from Tetragonia tetragonoides in LPS-induced RAW 264.7 cells

    Get PDF
    The present study was performed to investigate the anti-inflammatory activity of Tetragonia tetragonoides hydro- sols (TTH) and its underlying mechanism in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Gas chromatog- raphy (GC) coupled with mass spectrometry and retention index calculations showed that TTH were mainly com- posed of tetratetracontane (29.5 %), nonacosane (27.6 %), and oleamide (17.1 %). TTH significantly decreased the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-6, and IL-1β in LPS-stimulated RAW 264.7 cells. Consistent with these observations, TTH treatment decreased the protein expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). The molecular mechanism of its anti-inflamma- tory activity was found to be associated with inhibition of nuclear factor-kappa B (NF-κB) phosphorylation and nuclear translocation of NF-κB 65. Furthermore, TTH markedly suppressed the LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs). Taken together, these data indicate that TTH exerts an anti-inflam- matory activity by inhibiting the NF-κB and MAPK signaling pathways in LPS-stimulated RAW 264.7 cells

    Reevaluation of bactericidal, cytotoxic, and macrophage-stimulating activities of commercially available Fucus vesiculosus fucoidan

    Get PDF
    Polysaccharides prepared from marine algae sometimes contain contaminants such as polyphenols and endotoxins that may mislead their bona fide biological activities. In this study, we examined bioactive contaminants in commercially available fucoindan from Fucus vesiculosus, along with ascophyllan and fucoidan from Ascophyllum nodosum. F. vesiculosus fucoidan inhibited the growth of Vibrio alginolyticus in a concentration-dependent manner (0-1,000 μg mL?1). However, the antibacterial activity of the fucoidan significantly reduced after methanol-extraction, and the methanol-extract showed a potent antibacterial activity. The extract also showed cytotoxicity to RAW264.7 and U937 cells, and induced apoptotic nuclear morphological changes in U937 cells. These results suggest that the antibacterial activity of the fucoidan is partly due to the methanol-extractable contaminants that can also contribute to the cytotoxicity on RAW264.7 and U937 cells. On the other hand, the activities to induce secretion of nitric oxide and tumor necrosis factor-α from RAW264.7 cells were observed in the fucoidan even after methanol extraction, and the extract had no such activities. Our observations suggest that commercially available fucoidan should be purified prior to biochemical use

    Aqueous Synthesis of the Tiopronin-Capped Gold Nanoclusters/Nanoparticles with Precise Size Control via Deprotonation of the Ligand

    No full text
    Gold nanoparticles have led to numerous advances in nanomaterial-based sensors and biomedical technologies owing to their chemical inertness and outstanding physiochemical and optical properties. Gold nanoparticles are still considered one of the most promising types of nanomaterials in various biomedical fields, including drug delivery, cancer therapy, biomolecule detection, and high-accuracy diagnosis. Surface functionalization of gold nanoparticles with various ligands modifies the physicochemical properties of the surface, thereby improving the biocompatibility and uptake efficiency of a living system. Tiopronin, one of the most commonly used ligands for gold nanoparticles, has both thiol and carboxyl functional groups that can be easily attached to various biomolecules. However, the conventional method of synthesizing tiopronin-capped gold nanoclusters using methanol and acetic acid as a solvent requires a laborious and time-consuming dialysis process to remove methanol and acetic acid. In this study, we demonstrate a novel and simple aqueous synthesis method to obtain tiopronin-capped gold nanoclusters/nanoparticles with precise size control in the sub-nanometer to nanometer range. The main advantage of our synthesis method is that it does not require a dialysis process because it uses water as a solvent. The boron byproduct produced during the synthesis can be removed with a simple volatilization process. Moreover, we characterized the physical morphologies, photoelectronic properties, hydrodynamic size, and crystal structure of the tiopronin-capped gold nanoclusters/nanoparticles using transmission electron microscopy, spectrophotometry, fluorescence spectrometry, dynamic light scattering, zeta potential, and X-ray diffraction

    Liquid phase IR detector based on the photothermal effect of reduced graphene oxide-doped liquid crystals

    No full text
    Owing to the additional functionalities endowed by nanoparticle dopants, liquid crystals doped with nanoparticles are promising optical materials in a wide range of applications. In this study, we exploited the photothermal effect of reduced graphene oxide (rGO)-doped 5CB nematic liquid crystals (LC-rGO) to develop an infrared (IR) detector that is not only sensitive to IR but also measures the temperature and energy deposited in the detector. We demonstrate that rGO doping in LCs significantly enhances the IR absorption and transforms the light energy into thermal energy through the photothermal effect. The changes in the orientational order and birefringence of the LC-rGO induced by the photothermal effect under IR irradiation were manifested as an instantaneous color change in the white light probe beam. The change in the probe beam intensity was further translated into a temperature change and energy deposited in the detector. We also demonstrated that the external voltage applied to the detector significantly amplifies the photothermal responsivity by compensating for the anchoring energy of the LC. This study proposes a novel technology for detecting IR, temperature, and energy deposited in the detector by means of visible light, which has significant potential for developing large-area and high-resolution IR detectors by exploiting mature liquid crystal display technologies. © 2023 The Royal Society of Chemistry.FALS

    Gillisia marina sp. nov., from seashore sand, and emended description of the genus Gillisia

    No full text
    A Gram-staining-negative, strictly aerobic, rod-shaped bacterium, designated CBA3202 T , was isolated from seashore sand on Jeju Island, Republic of Korea. Based on the 16S rRNA gene sequence analysis, strain CBA3202 T was allocated to the genus Gillisia (family Flavobacteriaceae) and was most closely related to the type strain of Gillisia mitskevichiae (99.0 % 16S rRNA gene sequence similarity). Optimal growth occurred at 25 6C and with 3 % NaCl. The only isoprenoid quinone was menaquinone-6 (MK-6), the predominant fatty acids were C 16 : 0 , iso-C 15 : 1 G, iso-C 16 : 0 and summed feature 3 (comprising C 16 : 1 v6c and/or C 16 : 1 v7c), and the DNA G+C content was 34.9 mol%. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids and several unidentified polar lipids. Based on phylogenetic inference and phenotypic data, we conclude that strain CBA3202 T represents a novel species of the genus Gillisia, for which the name Gillisia marina sp. nov. is proposed. The type strain is CBA3202
    corecore