66 research outputs found

    Glycosylation of hyperthermostable designer cellulosome components yields enhanced stability and cellulose hydrolysis

    Get PDF
    Biomass deconstruction remains integral for enabling second‐generation biofuel production at scale. However, several steps necessary to achieve significant solubilization of biomass, notably harsh pretreatment conditions, impose economic barriers to commercialization. By employing hyperthermostable cellulase machinery, biomass deconstruction can be made more efficient, leading to milder pretreatment conditions and ultimately lower production costs. The hyperthermophilic bacterium Caldicellulosiruptor bescii produces extremely active hyperthermostable cellulases, including the hyperactive multifunctional cellulase CbCel9A/Cel48A. Recombinant CbCel9A/Cel48A components have been previously produced in Escherichia coli and integrated into synthetic hyperthermophilic designer cellulosome complexes. Since then, glycosylation has been shown to be vital for the high activity and stability of CbCel9A/Cel48A. Here, we studied the impact of glycosylation on a hyperthermostable designer cellulosome system in which two of the cellulosomal components, the scaffoldin and the GH9 domain of CbCel9A/Cel48A, were glycosylated as a consequence of employing Ca. bescii as an expression host. Inclusion of the glycosylated components yielded an active cellulosome system that exhibited long‐term stability at 75 °C. The resulting glycosylated designer cellulosomes showed significantly greater synergistic activity compared to the enzymatic components alone, as well as higher thermostability than the analogous nonglycosylated designer cellulosomes. These results indicate that glycosylation can be used as an essential engineering tool to improve the properties of designer cellulosomes. Additionally, Ca. bescii was shown to be an attractive candidate for production of glycosylated designer cellulosome components, which may further promote the viability of this bacterium both as a cellulase expression host and as a potential consolidated bioprocessing platform organism

    Glycosylation of hyperthermostable designer cellulosome components yields enhanced stability and cellulose hydrolysis

    Get PDF
    Biomass deconstruction remains integral for enabling second‐generation biofuel production at scale. However, several steps necessary to achieve significant solubilization of biomass, notably harsh pretreatment conditions, impose economic barriers to commercialization. By employing hyperthermostable cellulase machinery, biomass deconstruction can be made more efficient, leading to milder pretreatment conditions and ultimately lower production costs. The hyperthermophilic bacterium Caldicellulosiruptor bescii produces extremely active hyperthermostable cellulases, including the hyperactive multifunctional cellulase CbCel9A/Cel48A. Recombinant CbCel9A/Cel48A components have been previously produced in Escherichia coli and integrated into synthetic hyperthermophilic designer cellulosome complexes. Since then, glycosylation has been shown to be vital for the high activity and stability of CbCel9A/Cel48A. Here, we studied the impact of glycosylation on a hyperthermostable designer cellulosome system in which two of the cellulosomal components, the scaffoldin and the GH9 domain of CbCel9A/Cel48A, were glycosylated as a consequence of employing Ca. bescii as an expression host. Inclusion of the glycosylated components yielded an active cellulosome system that exhibited long‐term stability at 75 °C. The resulting glycosylated designer cellulosomes showed significantly greater synergistic activity compared to the enzymatic components alone, as well as higher thermostability than the analogous nonglycosylated designer cellulosomes. These results indicate that glycosylation can be used as an essential engineering tool to improve the properties of designer cellulosomes. Additionally, Ca. bescii was shown to be an attractive candidate for production of glycosylated designer cellulosome components, which may further promote the viability of this bacterium both as a cellulase expression host and as a potential consolidated bioprocessing platform organism

    Glycosylation Is Vital for Industrial Performance of Hyperactive Cellulases

    Get PDF
    In the terrestrial biosphere, biomass deconstruction is conducted by microbes employing a variety of complementary strategies, many of which remain to be discovered. Moreover, the biofuels industry seeks more efficient (and less costly) cellulase formulations upon which to launch the nascent sustainable bioenergy economy. The glycan decoration of fungal cellulases has been shown to protect these enzymes from protease action and to enhance binding to cellulose. We show here that thermal tolerant bacterial cellulases are glycosylated as well, although the types and extents of decoration differ from their Eukaryotic counterparts. Our major findings are that glycosylation of CelA is uniform across its three linker peptides and composed of mainly galactose disaccharides (which is unique) and that this glycosylation dramatically impacts the hydrolysis of insoluble substrates, proteolytic and thermal stability, and substrate binding and changes the dynamics of the enzyme. This study suggests that the glycosylation of CelA is crucial for its exceptionally high cellulolytic activity on biomass and provides the robustness needed for this enzyme to function in harsh environments including industrial settings

    Creation of a functional hyperthermostable designer cellulosome

    Get PDF
    Background: Renewable energy has become a field of high interest over the past decade, and production of biofuels from cellulosic substrates has a particularly high potential as an alternative source of energy. Industrial deconstruction of biomass, however, is an onerous, exothermic process, the cost of which could be decreased significantly by use of hyperthermophilic enzymes. An efficient way of breaking down cellulosic substrates can also be achieved by highly efficient enzymatic complexes called cellulosomes. The modular architecture of these multi-enzyme complexes results in substrate targeting and proximity-based synergy among the resident enzymes. However, cellulosomes have not been observed in hyperthermophilic bacteria. Results: Here, we report the design and function of a novel hyperthermostable “designer cellulosome” system, which is stable and active at 75 °C. Enzymes from Caldicellulosiruptor bescii, a highly cellulolytic hyperthermophilic anaerobic bacterium, were selected and successfully converted to the cellulosomal mode by grafting onto them divergent dockerin modules that can be inserted in a precise manner into a thermostable chimaeric scaffoldin by virtue of their matching cohesins. Three pairs of cohesins and dockerins, selected from thermophilic microbes, were examined for their stability at extreme temperatures and were determined stable at 75 °C for at least 72 h. The resultant hyperthermostable cellulosome complex exhibited the highest levels of enzymatic activity on microcrystalline cellulose at 75 °C, compared to those of previously reported designer cellulosome systems and the native cellulosome from Clostridium thermocellum. Conclusion: The functional hyperthermophilic platform fulfills the appropriate physico-chemical properties required for exothermic processes. This system can thus be adapted for other types of thermostable enzyme systems and could serve as a basis for a variety of cellulolytic and non-cellulolytic industrial objectives at high temperatures

    Glycosylation Is Vital for Industrial Performance of Hyperactive Cellulases

    Get PDF
    In the terrestrial biosphere, biomass deconstruction is conducted by microbes employing a variety of complementary strategies, many of which remain to be discovered. Moreover, the biofuels industry seeks more efficient (and less costly) cellulase formulations upon which to launch the nascent sustainable bioenergy economy. The glycan decoration of fungal cellulases has been shown to protect these enzymes from protease action and to enhance binding to cellulose. We show here that thermal tolerant bacterial cellulases are glycosylated as well, although the types and extents of decoration differ from their Eukaryotic counterparts. Our major findings are that glycosylation of CelA is uniform across its three linker peptides and composed of mainly galactose disaccharides (which is unique) and that this glycosylation dramatically impacts the hydrolysis of insoluble substrates, proteolytic and thermal stability, and substrate binding and changes the dynamics of the enzyme. This study suggests that the glycosylation of CelA is crucial for its exceptionally high cellulolytic activity on biomass and provides the robustness needed for this enzyme to function in harsh environments including industrial settings
    corecore