2,934 research outputs found

    P3-227: Determinants of recurrence and survival in patients following surgery for stage IB non-small cell lung cancer

    Get PDF

    Transduction of Cu, Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into human chondrocytes

    Get PDF
    This study was performed to investigate the transduction of a full-length superoxide dismutase (SOD) protein fused to transactivator of transcription (Tat) into human chondrocytes, and to determine the regulatory function of transduced Tat-SOD in the inflammatory cytokine induced catabolic pathway. The pTat-SOD expression vector was constructed to express the basic domain of HIV-1 Tat as a fusion protein with Cu, Zn-SOD. We also purified histidine-tagged SOD without an HIV-1 Tat and Tat-GFP as control proteins. Cartilage samples were obtained from patients with osteoarthritis (OA) and chondrocytes were cultured in both a monolayer and an explant. For the transduction of fusion proteins, cells/explants were treated with a variety of concentrations of fusion proteins. The transduced protein was detected by fluorescein labeling, western blotting and SOD activity assay. Effects of transduced Tat-SOD on the regulation of IL-1 induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) mRNA expression was assessed by the Griess reaction and reverse transcriptase PCR, respectively. Tat-SOD was successfully delivered into both the monolayer and explant cultured chondrocytes, whereas the control SOD was not. The intracellular transduction of Tat-SOD into cultured chondrocytes was detected after 1 hours, and the amount of transduced protein did not change significantly after further incubation. SOD enzyme activity increased in a dose-dependent manner. NO production and iNOS mRNA expression, in response to IL-1 stimulation, was significantly down-regulated by pretreatment with Tat-SOD fusion proteins. This study shows that protein delivery employing the Tat-protein transduction domain is feasible as a therapeutic modality to regulate catabolic processes in cartilage. Construction of additional Tat-fusion proteins that can regulate cartilage metabolism favorably and application of this technology in in vivo models of arthritis are the subjects of future studies

    Predictive Coding Strategies for Developmental Neurorobotics

    Get PDF
    In recent years, predictive coding strategies have been proposed as a possible means by which the brain might make sense of the truly overwhelming amount of sensory data available to the brain at any given moment of time. Instead of the raw data, the brain is hypothesized to guide its actions by assigning causal beliefs to the observed error between what it expects to happen and what actually happens. In this paper, we present a variety of developmental neurorobotics experiments in which minimalist prediction error-based encoding strategies are utilize to elucidate the emergence of infant-like behavior in humanoid robotic platforms. Our approaches will be first naively Piagian, then move onto more Vygotskian ideas. More specifically, we will investigate how simple forms of infant learning, such as motor sequence generation, object permanence, and imitation learning may arise if minimizing prediction errors are used as objective functions
    • ā€¦
    corecore