2,036 research outputs found

    Ferromagnetic Fixed Point of the Kondo Model in a Luttinger Liquid

    Full text link
    The Kondo effect in a Luttinger liquid is studied using the renormalization group method. By renormalizing the boson fields, scaling equations to the second order for an arbitrary Luttinger interaction are obtained. For the ferromagnetic Kondo coupling, a spin bound state(triplet) can be realized without invoking a nearest neighbor spin interaction in agreement with the recent Bethe ansatz calculation. The scaling theory in the presence of the scalar potential shows that there is no interplay between the magnetic and non-magnetic interaction. Also a study on the crossover behavior of the Kondo temperature between the exponential and the power law type is presented.Comment: 9 pages, 2 figures. Accepted for publication in J. Phys.: Condens. Matte

    A Near-Infrared Study of the Highly-Obscured Active Star-Forming Region W51B

    Full text link
    We present wide-field JHKs-band photometric observations of the three compact HII regions G48.9-0.3, G49.0-0.3, and G49.2-0.3 in the active star-forming region W51B. The star clusters inside the three compact HII regions show the excess number of stars in the J-Ks histograms compared with reference fields. While the mean color excess ratio E(J-H)/E(H-Ks) of the three compact HII regions are similar to ~ 2.07, the visual extinctions toward them are somewhat different: ~ 17 mag for G48.9-0.3 and G49.0-0.3; ~ 23 mag for G49.2-0.3. Based on their sizes and brightnesses, we suggest that the age of each compact HII region is =< 2 Myr. The inferred total stellar mass, ~ 1.4 x 10^4 M_sun, of W51B makes it one of the most active star forming regions in the Galaxy with the star formation efficiency of ~ 10 %.Comment: 12 pages, 10 eps figures, uses jkas.st

    Near-Infrared Spectroscopy of Infrared-Excess Stellar Objects in the Young Supernova Remnant G54.1+0.3

    Get PDF
    We present the results of broadband near-infrared spectroscopic observations of the recently discovered mysterious stellar objects in the young supernova remnant G54.1+0.3. These objects, which show significant mid-infrared-excess emission, are embedded in a diffuse loop structure of ~1' in radius. Their near-infrared spectra reveal characteristics of late O- or early B-type stars with numerous H and He I absorption lines, and we classify their spectral types to be between O9 and B2 based on an empirical relation derived here between the equivalent widths of the H lines and stellar photospheric temperatures. The spectral types, combined with the results of spectral energy distribution fits, constrain the distance to the objects to be 6.0 ± 0.4 kpc. The photometric spectral types of the objects are consistent with those from the spectroscopic analyses, and the extinction distributions indicate a local enhancement of matter in the western part of the loop. If these objects originate via triggered formation by the progenitor star of G54.1+0.3, then their formations likely began during the later evolutionary stages of the progenitor, although a rather earlier formation may still be possible. If the objects and the progenitor belong to the same cluster of stars, then our results constrain the progenitor mass of G54.1+0.3 to be between 18 and ~35 M_☉ and suggest that G54.1+0.3 was either a Type IIP supernova or, with a relatively lower possibility, Type Ib/c from a binary system

    Diamagnetic response of Aharonov-Bohm rings: Impurity backward scatterings

    Full text link
    We report a theoretical calculation on the persistent currents of disordered normal-metal rings. It is shown that the diamagnetic responses of the rings in the vicinity of the zero magnetic field are attributed to multiple backward scatterings off the impurities. We observe the transition from the paramagnetic response to the diamagnetic one as the strength of disorder grows using both the analytic calculation and the numerical exact diagonalization.Comment: final versio
    corecore