948 research outputs found

    Electrochemical Investigation of High-Performance Dye-Sensitized Solar Cells Based on Molybdenum for Preparation of Counter Electrode

    Get PDF
    In order to improve the photocurrent conversion efficiency of dye-sensitized solar cells (DSSCs), we studied an alternative conductor for the counter electrode and focused on molybdenum (Mo) instead of conventional fluorine-doped tin oxide (FTO). Because Mo has a similar work function to FTO for band alignment, better formability of platinum (Pt), and a low electric resistance, using a counter electrode made of Mo instead of FTO lead to the enhancement of the catalytic reaction of the redox couple, reduce the interior resistance of the DSSCs, and prevent energy-barrier formation. Using electrical measurements under a 1-sun condition (100 mW/cm(2), AM 1.5), we determined that the fill factor (FF) and photocurrent conversion efficiency (eta) of DSSCs with a Mo electrode were respectively improved by 7.75% and 5.59% with respect to those of DSSCs with an FTO electrode. Moreover, we have investigated the origin of the improved performance through surface morphology analyses such as scanning electron microscopy and electrochemical analyses including cyclic voltammetry and impedance spectroscopy

    Particulate counter electrode system for enhanced light harvesting in dye-sensitized solar cells

    Get PDF
    A particulate counter electrode with photo scattering and redox catalytic properties is applied to dye sensitized solar cells (DSSCs) in order to improve photo conversion efficiency and simplify the assembly process. Our particulate counter electrode acts as both a photo reflecting layer and a catalyst for reduction of electrolyte. The reflective and catalytic properties of the electrode are investigated through optical and electrochemical analysis, respectively. A short circuit current density enhancement is observed in the DSSCs without the need to add an additional reflecting layer to the electrode. This leads to a simplified assembly process. (C) 2013 Optical Society of Americ

    (1,2-Dicarba-closo-dodeca­boran­yl)trimethyl­methanaminium iodide

    Get PDF
    The title compound, [1-(CH3)3NCH2-1,2-C2B10H11]+·I− or C6H22B10N+·I−, was obtained by the reaction of (1,2-dicarba-closo-dodeca­boran­yl)dimethyl­methanamine with methyl iodide. The asymmetric unit contains two iodide anions and two (o-carboran­yl)tetra­methyl­ammonium cations. The bond lengths and angles in the carborane cage are within normal ranges, but the N—Cmethyl­ene—Ccage angle is very large [120.2 (2)°] because of repulsion between the carborane and tetra­methyl­ammonium units. In the crystal, ions are linked through C—H⋯I hydrogen bonds

    Lattice-patterned LC-polymer composites containing various nanoparticles as additives

    Get PDF
    In this study, we show the effect of various nanoparticle additives on phase separation behavior of a lattice-patterned liquid crystal [LC]-polymer composite system and on interfacial properties between the LC and polymer. Lattice-patterned LC-polymer composites were fabricated by exposing to UV light a mixture of a prepolymer, an LC, and SiO2 nanoparticles positioned under a patterned photomask. This resulted in the formation of an LC and prepolymer region through phase separation. We found that the incorporation of SiO2 nanoparticles significantly affected the electro-optical properties of the lattice-patterned LC-polymer composites. This effect is a fundamental characteristic of flexible displays. The electro-optical properties depend on the size and surface functional groups of the SiO2 nanoparticles. Compared with untreated pristine SiO2 nanoparticles, which adversely affect the performance of LC molecules surrounded by polymer walls, SiO2 nanoparticles with surface functional groups were found to improve the electro-optical properties of the lattice-patterned LC-polymer composites by increasing the quantity of SiO2 nanoparticles. The surface functional groups of the SiO2 nanoparticles were closely related to the distribution of SiO2 nanoparticles in the LC-polymer composites, and they influenced the electro-optical properties of the LC molecules. It is clear from our work that the introduction of nanoparticles into a lattice-patterned LC-polymer composite provides a method for controlling and improving the composite's electro-optical properties. This technique can be used to produce flexible substrates for various flexible electronic devices

    Poly(L-histidine)-tagged 5-aminolevulinic acid prodrugs: new photosensitizing precursors of protoporphyrin IX for photodynamic colon cancer therapy

    Get PDF
    Renjith P Johnson,1* Chung-Wook Chung,2* Young-Il Jeong,2 Dae Hwan Kang,2 Hongsuk Suh,3 Il Kim,11WCU Centre for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University, Pusan, 2National Research and Development Center for Hepatobiliary Cancer, Pusan National University, Yangsan Hospital, Yangsan, Gyeongnam, 3Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Pusan, Korea*These authors contributed equally to this workBackground: 5-Aminolevulinic acid (ALA) and its derivatives have been widely used in photodynamic therapy. The main drawback associated with ALA-based photodynamic therapy (ALA-PDT) and ALA fluorescence diagnosis results from the hydrophilic nature of ALA and lack of selectivity for tumor versus nontumor cells. The application of certain triggers, such as pH, into conventional sensitizers for controllable 1O2 release is a promising strategy for tumor-targeted treatment.Methods: A series of pH-sensitive ALA-poly(L-histidine) [p(L-His)n] prodrugs were synthesized via ring opening polymerization of 1-benzyl-N-carboxy-L-histidine anhydride initiated by the amine hydrochloride group of ALA itself. As an alternative to ALA for PDT, the synthesized prodrugs were used to treat a cultured human colon cancer HCT116 cell line under different pH conditions. The effect of ALA-p(L-His)n derivatives was evaluated by monitoring the fluorescence intensity of protoporphyrin IX, and measuring the cell survival rate after suitable light irradiation.Results: The cytotoxicity and dark toxicity of ALA and synthesized ALA-p(L-His) derivatives in HEK293T and HCT116 cells in the absence of light at pH 7.4 and 6.8 shows that the cell viability was relatively higher than 100%. ALA-p(L-His)n showed high phototoxicity and selectivity in different pH conditions compared with ALA alone. Because the length of the histidine chain increases in the ALA-p(L-His)n prodrugs, the PDT effect was found to be more powerful. In particular, high phototoxicity was observed when the cells were treated with ALA-p(L-His)15, compared with treatment using ALA alone.Conclusion: The newly synthesized ALA-p(L-His)n derivatives are an effective alternative to ALA for enhancing protoporphyrin IX production and the selectivity of the phototoxic effect in tumor cells.Keywords: 5-aminolevulinic acid, photodynamic therapy, poly(L-histidine), bioconjugate, cancer cell

    Antitumor activity of sorafenib-incorporated nanoparticles of dextran/poly(dl-lactide-co-glycolide) block copolymer

    Get PDF
    Sorafenib-incoporated nanoparticles were prepared using a block copolymer that is composed of dextran and poly(DL-lactide-co-glycolide) [DexbLG] for antitumor drug delivery. Sorafenib-incorporated nanoparticles were prepared by a nanoprecipitation-dialysis method. Sorafenib-incorporated DexbLG nanoparticles were uniformly distributed in an aqueous solution regardless of the content of sorafenib. Transmission electron microscopy of the sorafenib-incorporated DexbLG nanoparticles revealed a spherical shape with a diameter < 300 nm. Sorafenib-incorporated DexbLG nanoparticles at a polymer/drug weight ratio of 40:5 showed a relatively uniform size and morphology. Higher initial drug feeding was associated with increased drug content in nanoparticles and in nanoparticle size. A drug release study revealed a decreased drug release rate with increasing drug content. In an in vitro anti-proliferation assay using human cholangiocarcinoma cells, sorafenib-incorporated DexbLG nanoparticles showed a similar antitumor activity as sorafenib. Sorafenib-incorporated DexbLG nanoparticles are promising candidates as vehicles for antitumor drug targeting

    Pixel-isolation liquid crystals formed by polarization-selective UV-curing of a prepolymer containing cinnamate oligomer

    Get PDF
    A pixel isolated liquid crystal display was fabricated by polarization-selective anisotropic photoreaction of a prepolymer containing a cinnamate oligomer. The cinnamate oligomer was mainly distributed on the surface region of a UV-cured polymer wall. Anisotropic photo-dimerization of cinnamate moiety was achieved by polarized UV exposure. It was found that the polymer walls containing cinnamate dimers formed by polarized UV exposure showed ordered orientation of LC molecules at the boundary of the polymer walls resulting in electro-optic performance improvement. © 2010 Optical Society of America.1

    A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

    Get PDF
    ABSTRACT:Independent Component Analysis (ICA), one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: insta- bility and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to vali- date the proposed method, numerical analyses have been carried out for a virtual response model and a 30m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique
    corecore