67 research outputs found

    BK Virus Infection in Renal Allograft Recipients

    Get PDF

    Urinary cell mRNA profiles predictive of human kidney allograft status

    Get PDF
    Kidney allograft status is currently characterized using the invasive percutaneous needle core biopsy procedure. The procedure has become safer over the years, but challenges and complications still exist including sampling error, interobserver variability, bleeding, arteriovenous fistula, graft loss, and even death. Because the most common type of acute rejection is distinguished by inflammatory cells exiting the intravascular compartment and gaining access to the renal tubular space, we reasoned that a kidney allograft may function as an in vivo flow cytometer and sort cells involved in rejection into urine. To test this idea, we developed quantitative polymerase chain reaction (PCR) assays for absolute quantification of mRNA and pre-amplification protocols to overcome the low RNA yield from urine. Here, we review our single center urinary cell mRNA profiling studies that led to the multicenter Clinical Trials in Organ Transplantation (CTOT-04) study and the discovery and validation of a 3-gene signature of 18S rRNA-normalized measures of CD3Δ mRNA and IP-10 mRNA and 18S rRNA that is diagnostic and predictive of acute cellular rejection in the kidney allograft. We also review our development of a 4-gene signature of mRNAs for vimentin, NKCC2, E-cadherin, and 18S rRNA diagnostic of interstitial fibrosis/tubular atrophy (IF/TA)

    Allograft rejection and tubulointerstitial fibrosis in human kidney allografts: Interrogation by urinary cell mRNA profiling

    Get PDF
    Because the kidney allograft has the potential to function as an in-vivo flow cytometer and facilitate the access of immune cells and kidney parenchymal cells in to the urinary space, we hypothesized that mRNA profiling of urinary cells offers a noninvasive means of assessing the kidney allograft status. We overcame the inherent challenges of urinary cell mRNA profiling by developing pre-amplification protocols to compensate for low RNA yield from urinary cells and by developing robust protocols for absolute quantification mRNAs using RT-PCR assays. Armed with these tools, we undertook first single-center studies urinary cell mRNA profiling and then embarked on the multicenter Clinical Trials in Organ Transplantation-04 study of kidney transplant recipients. We report here our discovery and validation of diagnostic and prognostic biomarkers of acute cellular rejection and of interstitial fibrosis and tubular atrophy (IF/TA). Our urinary cell mRNA profiling studies, in addition to demonstrating the feasibility of accurate diagnosis of acute cellular rejection and IF/TA in the kidney allograft, advance mechanistic and potentially targetable biomarkers. Interventional trials, guided by urinary cell mRNA profiles, may lead to personalized immunosuppression in recipients of kidney allografts

    Factors at de novo donorĂą specific antibody initial detection associated with allograft loss: a multicenter study

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149234/1/tri13395-sup-0001-FigS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149234/2/tri13395_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149234/3/tri13395.pd

    Impact of functional status on outcomes of simultaneous pancreas-kidney transplantation: Risks and opportunities for patient benefit

    Get PDF
    Background. The impact of functional status on survival among simultaneous pancreas-kidney transplant (SPKT) candidates and recipients is not well described. Methods. We examined national Scientific Registry of Transplant Recipients (SRTR) data for patients listed for SPKT in the United States (2006-2019). Functional status was categorized by center-reported Karnofsky Performance Score (KPS). We used Cox regression to quantify associations of KPS at listing and transplant with subsequent patient survival, adjusted for baseline patient and transplant factors (adjusted hazard ratio,(95% LCL)aHR(95%UCL)). We also explored time-dependent associations of SPKT with survival risk after listing compared with continued waiting in each functional status group. Results. KPS distributions among candidates (N = 16 822) and recipients (N = 10 316), respectively, were normal (KPS 80-100), 62.0% and 57.8%; capable of self-care (KPS 70), 23.5% and 24.7%; requires assistance (KPS 50-60), 12.4% and 14.2%; and disabled (KPS 10-40), 2.1% and 3.3%. There was a graded increase in mortality after listing and after transplant with lower functional levels. Compared with normal functioning, mortality after SPKT rose progressively for patients capable of self-care (aHR,(1.00)1.18(1.41)), requiring assistance (aHR,(1.06)1.31(1.60)), and disabled (aHR,(1.10)1.55(2.19)). In time-dependent regression, compared with waiting, SPKT was associated with 2-fold mortality risk within 30 days of transplant. However, beyond 30 days, SPKT was associated with reduced mortality, from 52% for disabled patients (aHR,(0.26)0.48(0.88)) to 70% for patients with normal functioning (aHR,(0.26)0.30(0.34)). Conclusions. While lower functional status is associated with increased mortality risk among SPKT candidates and recipients, SPKT can provide long-term survival benefit across functional status levels in those selected for transplant

    Urinary-Cell mRNA Profile and Acute Cellular Rejection in Kidney Allografts

    Get PDF
    Background—The standard test for the diagnosis of acute rejection in kidney transplants is the renal biopsy. Noninvasive tests would be preferable. Methods—We prospectively collected 4300 urine specimens from 485 kidney-graft recipients from day 3 through month 12 after transplantation. Messenger RNA (mRNA) levels were measured in urinary cells and correlated with allograft-rejection status with the use of logistic regression. Results—A three-gene signature of 18S ribosomal (rRNA)–normalized measures of CD3Δ mRNA and interferon-inducible protein 10 (IP-10) mRNA, and 18S rRNA discriminated between biopsy specimens showing acute cellular rejection and those not showing rejection (area under the curve [AUC], 0.85; 95% confidence interval [CI], 0.78 to 0.91; P<0.001 by receiver-operatingcharacteristic curve analysis). The cross-validation estimate of the AUC was 0.83 by bootstrap resampling, and the Hosmer–Lemeshow test indicated good fit (P = 0.77). In an externalvalidation data set, the AUC was 0.74 (95% CI, 0.61 to 0.86; P<0.001) and did not differ significantly from the AUC in our primary data set (P = 0.13). The signature distinguished acute cellular rejection from acute antibody-mediated rejection and borderline rejection (AUC, 0.78; 95% CI, 0.68 to 0.89; P<0.001). It also distinguished patients who received anti–interleukin-2 receptor antibodies from those who received T-cell–depleting antibodies (P<0.001) and was diagnostic of acute cellular rejection in both groups. Urinary tract infection did not affect the signature (P = 0.69). The average trajectory of the signature in repeated urine samples remained below the diagnostic threshold for acute cellular rejection in the group of patients with no rejection, but in the group with rejection, there was a sharp rise during the weeks before the biopsy showing rejection (P<0.001). Conclusions—A molecular signature of CD3Δ mRNA, IP-10 mRNA, and 18S rRNA levels in urinary cells appears to be diagnostic and prognostic of acute cellular rejection in kidney allografts

    The Banff 2022 Kidney Meeting Work Plan:Data-driven refinement of the Banff Classification for renal allografts

    Get PDF
    The XVIth Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from September 19 to 23, 2022, as a joint meeting with the Canadian Society of Transplantation. In addition to a key focus on the impact of microvascular inflammation and biopsy-based transcript analysis on the Banff Classification, further sessions were devoted to other aspects of kidney transplant pathology, in particular T cell–mediated rejection, activity and chronicity indices, digital pathology, xenotransplantation, clinical trials, and surrogate endpoints. Although the output of these sessions has not led to any changes in the classification, the key role of Banff Working Groups in phrasing unanswered questions, and coordinating and disseminating results of investigations addressing these unanswered questions was emphasized. This paper summarizes the key Banff Meeting 2022 sessions not covered in the Banff Kidney Meeting 2022 Report paper and also provides an update on other Banff Working Group activities relevant to kidney allografts.</p

    The Banff 2022 Kidney Meeting Work Plan:Data-driven refinement of the Banff Classification for renal allografts

    Get PDF
    The XVIth Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from September 19 to 23, 2022, as a joint meeting with the Canadian Society of Transplantation. In addition to a key focus on the impact of microvascular inflammation and biopsy-based transcript analysis on the Banff Classification, further sessions were devoted to other aspects of kidney transplant pathology, in particular T cell–mediated rejection, activity and chronicity indices, digital pathology, xenotransplantation, clinical trials, and surrogate endpoints. Although the output of these sessions has not led to any changes in the classification, the key role of Banff Working Groups in phrasing unanswered questions, and coordinating and disseminating results of investigations addressing these unanswered questions was emphasized. This paper summarizes the key Banff Meeting 2022 sessions not covered in the Banff Kidney Meeting 2022 Report paper and also provides an update on other Banff Working Group activities relevant to kidney allografts.</p
    • 

    corecore