100 research outputs found

    ADEPT - Next Generation Process Management Technology

    Get PDF
    In the ADEPT project we have been working on the design and implementation of a next generation process management technology for several years. Based on a conceptual framework for dynamic process changes, on innovative process support functions, and on advanced implementation concepts, the developed system enables the realization of adaptive, process-aware information systems (PAIS). Basically, process changes can take place at the process type as well as the process instance level: Changes of single process instances may have to be carried out in an ad-hoc manner (e.g., to deal with an exceptional situation) and must not affect system robustness and consistency. Process type changes, in turn, must be quickly accomplished in order to adapt the PAIS to business process changes. This may also include the migration of (thousands of) instances to the new process schema (if desired). Important requirements are to perform respective migrations on-the-fly, to preserve correctness, and to avoid performance penalties

    ADEPT2 - Next Generation Process Management Technology

    Get PDF
    If current process management systems shall be applied to a broad spectrum of applications, they will have to be significantly improved with respect to their technological capabilities. In particular, in dynamic environments it must be possible to quickly implement and deploy new processes, to enable ad-hoc modifications of single process instances at runtime (e.g., to add, delete or shift process steps), and to support process schema evolution with instance migration, i.e., to propagate process schema changes to already running instances. These requirements must be met without affecting process consistency and by preserving the robustness of the process management system. In this paper we describe how these challenges have been addressed and solved in the ADEPT2 Process Management System. Our overall vision is to provide a next generation process management technology which can be used in a variety of application domains

    Guarded Process Spaces (GPS): A Navigation System towards Creation and Dynamic Change of Healthcare Processes from the End-User’s Perspective

    Get PDF
    Efficient process management becomes increasingly crucial for hospitals to survive on a competitive market. Process management in this domain must comply with individual conditions of patients and quickly react to changing requirements and organizational parameters. With Guarded Process Spaces (GPS) we developed a formally based concept that makes it possible to enable end-users to create and flexibly change processes themselves. Our approach makes use of existing BPM technology while abstracting from technical interfaces and system-specific modeling paradigms. In this way, it provides the basis to gain user acceptance and to achieve technological independence

    ADEPT2 – Ein adaptives Prozess-Management-System der nächsten Generation.

    Get PDF
    Prozess-Management-Systeme müssen gegenüber dem heutigen Stand der Technik erheblich leistungsfähiger werden, um für ein wirklich breites Anwendungsspektrum einsetzbar zu sein: Neue Prozesse müssen sehr viel rascher implementierbar sein, zur Laufzeit müssen bei Bedarf Ad-hoc-Abweichungen vom modellierten Prozessschema unterstützt werden und bei Änderungen am Prozessschema selbst, müssen die bereits laufenden Prozessinstanzen – falls erforderlich – systemseitig auf das neue Schema migriert werden können; und dies alles unter systemseitiger Zusicherung von Konsistenz und Robustheit der (weiteren) Prozessausführung. Der Beitrag beschreibt, wie diese Herausforderungen und Probleme im ADEPT2-System adressiert bzw. gelöst werden

    How Advanced Change Patterns Impact the Process of Process Modeling

    Get PDF
    Process model quality has been an area of considerable research efforts. In this context, correctness-by-construction as enabled by change patterns provides promising perspectives. While the process of process modeling (PPM) based on change primitives has been thoroughly investigated, only little is known about the PPM based on change patterns. In particular, it is unclear what set of change patterns should be provided and how the available change pattern set impacts the PPM. To obtain a better understanding of the latter as well as the (subjective) perceptions of process modelers, the arising challenges, and the pros and cons of different change pattern sets we conduct a controlled experiment. Our results indicate that process modelers face similar challenges irrespective of the used change pattern set (core pattern set versus extended pattern set, which adds two advanced change patterns to the core patterns set). An extended change pattern set, however, is perceived as more difficult to use, yielding a higher mental effort. Moreover, our results indicate that more advanced patterns were only used to a limited extent and frequently applied incorrectly, thus, lowering the potential benefits of an extended pattern set

    Supporting Data Collection in Complex Scenarios with Dynamic Data Collection Processes

    Get PDF
    Nowadays, companies have to report a large number of data sets (e.g., sustainability data) regarding their products to different legal authorities. However, in today's complex supply chains products are the outcome of the collaboration of many companies. To gather the needed data sets, companies have to employ cross-organizational and long-running data collection processes that imply great variability. To support such scenarios, we have designed a lightweight, automated approach for contextual process configuration. That approach can capture the contextual properties of the respective situations and, based on them, automatically configure a process instance accordingly, even without human involvement. Finally, we implemented our approach and started an industrial evaluation

    Enhancing modeling and change support for process families through change patterns

    Get PDF
    The increasing adoption of process-aware information systems (PAISs), together with the variability of business processes (BPs), has resulted in large collections of related process model variants (i.e., process families). To effectively deal with process families, several proposals (e.g., C-EPC, Provop) exist that extend BP modeling languages with variability-specific constructs. While fostering reuse and reducing modeling efforts, respective constructs imply additional complexity and demand proper support for process designers when creating and modifying process families. Recently, generic and language independent adaptation patterns were successfully introduced for creating and evolving single BP models. However, they are not sufficient to cope with the specific needs for modeling and evolving process families. This paper suggests a complementary set of generic and language-independent change patterns specifically tailored to the needs of process families. When used in combination with existing adaptation patterns, change patterns for process families will enable the modeling and evolution of process families at a high-level of abstraction. Further, they will serve as reference for implementing tools or comparing proposals managing process families. © 2013 Springer-Verlag.This work has been developed with the support of MICINN under the Project EVERYWARE TIN2010-18011.Ayora Esteras, C.; Torres Bosch, MV.; Weber, B.; Reichert, M.; Pelechano Ferragud, V. (2013). Enhancing modeling and change support for process families through change patterns. En Enterprise, Business-Process and Information Systems Modeling, BPMDS 2013. Springer Verlag. 246-260. https://doi.org/10.1007/978-3-642-38484-4_18S246260van der Aalst, W.M.P., ter Hofstede, A.H.M., Barros, B.: Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)Aghakasiri, Z., Mirian-Hosseinabadi, S.H.: Workflow change patterns: Opportunities for extension and reuse. In: Proc. SERA 2009, pp. 265–275 (2009)Ayora, C., Torres, V., Reichert, M., Weber, B., Pelechano, V.: Towards run-time flexibility for process families: Open issues and research challenges. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP, vol. 132, pp. 477–488. Springer, Heidelberg (2013)Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: Change patterns for process families. Technical Report, PROS-TR-2012-06, http://www.pros.upv.es/technicalreports/PROS-TR-2012-06.pdfDadam, P., Reichert, M.: The ADEPT project: a decade of research and development for robust and flexible process support. Com. Sci. - R&D 23, 81–97 (2009)Dijkman, R., La Rosa, M., Reijers, H.A.: Managing large collections of business process models - Current techniques and challenges. Comp. in Ind. 63(2), 91–97 (2012)Döhring, M., Zimmermann, B., Karg, L.: Flexible workflows at design- and runtime using BPMN2 adaptation patterns. In: Abramowicz, W. (ed.) BIS 2011. LNBIP, vol. 87, pp. 25–36. Springer, Heidelberg (2011)Gottschalk, F.: Configurable process models. Ph.D. thesis, Eindhoven University of Technology, The Netherlands (2009)Grambow, G., Oberhauser, R., Reichert, M.: Contextual injection of quality measures into software engineering processes. Intl. J. Adv. in Software 4, 76–99 (2011)Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 4–19. Springer, Heidelberg (2008)Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.M.P.: Change mining in adaptive process management systems. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 309–326. Springer, Heidelberg (2006)Hallerbach, A., Bauer, T., Reichert, M.: Context-based configuration of process variants. In: Proc. TCoB 2008, pp. 31–40 (2008)Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models: the Provop approach. J. of Software Maintenance 22(6-7), 519–546 (2010)Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in Software Engineering, Technical Report EBSE/EPIC–2007–01 (2007)Kulkarni, V., Barat, S., Roychoudhury, S.: Towards business application product lines. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 285–301. Springer, Heidelberg (2012)Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process model differences in the absence of a change log. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg (2008)Küster, J.M., Gerth, C., Engels, G.: Dynamic computation of change operations in version management of business process models. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 201–216. Springer, Heidelberg (2010)Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information systems. Requirements Engineering, 1–29 (2012)La Rosa, M., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-based variability modeling for system configuration. Software and System Modeling 8(2), 251–274 (2009)Lerner, B.S., Christov, S., Osterweil, L.J., Bendraou, R., Kannengiesser, U., Wise, A.: Exception Handling Patterns for Process Modeling. IEEE Transactions on Software Engineering 36(2), 162–183 (2010)Li, C., Reichert, M., Wombacher, A.: Mining business process variants: Challenges, scenarios, algorithms. Data Knowledge & Engineering 70(5), 409–434 (2011)Marrella, A., Mecella, M., Russo, A.: Featuring automatic adaptivity through workflow enactment and planning. In: Proc. CollaborateCom 2011, pp. 372–381 (2011)Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release management processes in the automotive industry. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 368–377. Springer, Heidelberg (2006)Reichert, M., Weber, B.: Enabling flexibility in process-aware information systems: challenges, methods, technologies. Springer (2012)Reinhartz-Berger, I., Soffer, P., Sturm, A.: Organizational reference models: supporting an adequate design of local business processes. IBPIM 4(2), 134–149 (2009)Rosemann, M., van der Aalst, W.M.P.: A configurable reference modeling language. Information Systems 32(1), 1–23 (2007)Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow data patterns. Technical Report FIT-TR-2004-01, Queensland Univ. of Technology (2004)Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow resource patterns. Technical Report WP 127, Eindhoven Univ. of Technology (2004)Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Workflow Exception Patterns. In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 288–302. Springer, Heidelberg (2006)Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Object-sensitive action patterns in process model repositories. In: Muehlen, M.z., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 251–263. Springer, Heidelberg (2011)Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features - Enhancing flexibility in process-aware information systems. Data Knowledge & Engineering 66, 438–466 (2008)Weber, B., Sadiq, S., Reichert, M.: Beyond rigidity - dynamic process lifecycle support. Computer Science 23, 47–65 (2009)Weber, B., Reichert, M., Reijers, H.A., Mendling, J.: Refactoring large process model repositories. Computers in Industry 62(5), 467–486 (2011

    The effect of increased NaCl intake on rat brain endogenous mu-opioid receptor signalling

    Get PDF
    Numerous studies demonstrate the significant role of central -endorphin and its receptor, the mu-opioid receptor (MOR), in sodium intake regulation. The present study aimed to investigate the possible relationship between chronic high-NaCl intake and brain endogenous MOR functioning. We examined whether short-term (4 days) obligatory salt intake (2% NaCl solution) in rats induces changes in MOR mRNA expression, G-protein activity and MOR binding capacity in brain regions involved in salt intake regulation. Plasma osmolality and electrolyte concentrations after sodium overload and the initial and final body weight of the animals were also examined. After 4 days of obligatory hypertonic sodium chloride intake, there was clearly no difference in MOR mRNA expression and G-protein activity in the median preoptic nucleus (MnPO). In the brainstem, MOR binding capacity also remained unaltered, although the maximal efficacy of MOR G-protein significantly increased. Finally, no significant alterations were observed in plasma osmolality and electrolyte concentrations. Interestingly, animals that received sodium gained significantly less weight than control animals. In conclusion, we found no significant alterations in the MnPO and brainstem in the number of available cell surface MORs or de novo syntheses of MOR after hypertonic sodium intake. The increased MOR G-protein activity following acute sodium overconsumption may participate in the maintenance of normal blood pressure levels and/or in enhancing sodium taste aversion and sodium overload-induced anorexia

    On Enabling Compliance of Cross-Organizational Business Processes

    Get PDF
    Process compliance deals with the ability of a company to ensure that its business processes comply with domain-specific regulations and rules. So far, compliance issues have been mainly addressed for intra-organizational business processes, whereas there exists only little work dealing with compliance in the context of cross-organizational processes that involve multiple business partners. As opposed to intra-organizational processes, for a cross-organizational process, compliance must be addressed at different modeling levels, ranging from interaction models to public process models to private processes of the partners. Accordingly, there exist different levels for modeling compliance rules. In particular, we distinguish between local compliance rules of a particular partner and global compliance rules to be obeyed by all partners involved in the cross-organizational process. This paper focuses on checking the compliance of interaction models. For this purpose, we introduce the notion of compliability, which shall guarantee that an interaction model is not conflicting with a set of imposed global compliance rules
    • …
    corecore