7 research outputs found

    Synthesis and Biological Characterization of Aryl Uracil Inhibitors of Hepatitis C Virus NS5B Polymerase: Discovery of ABT-072, a <i>trans</i>-Stilbene Analog with Good Oral Bioavailability

    No full text
    ABT-072 is a non-nucleoside HCV NS5B polymerase inhibitor that was discovered as part of a program to identify new direct-acting antivirals (DAAs) for the treatment of HCV infection. This compound was identified during a medicinal chemistry effort to improve on an original lead, inhibitor <b>1</b>, which we described in a previous publication. Replacement of the amide linkage in <b>1</b> with a trans-olefin resulted in improved compound permeability and solubility and provided much better pharmacokinetic properties in preclinical species. Replacement of the dihydrouracil in <b>1</b> with an N-linked uracil provided better potency in the genotype 1 replicon assay. Results from phase 1 clinical studies supported once-daily oral dosing with ABT-072 in HCV infected patients. A phase 2 clinical study that combined ABT-072 with the HCV protease inhibitor ABT-450 provided a sustained virologic response at 24 weeks after dosing (SVR<sub>24</sub>) in 10 of 11 patients who received treatment

    Synthesis and Biological Characterization of Aryl Uracil Inhibitors of Hepatitis C Virus NS5B Polymerase: Discovery of ABT-072, a <i>trans</i>-Stilbene Analog with Good Oral Bioavailability

    No full text
    ABT-072 is a non-nucleoside HCV NS5B polymerase inhibitor that was discovered as part of a program to identify new direct-acting antivirals (DAAs) for the treatment of HCV infection. This compound was identified during a medicinal chemistry effort to improve on an original lead, inhibitor <b>1</b>, which we described in a previous publication. Replacement of the amide linkage in <b>1</b> with a trans-olefin resulted in improved compound permeability and solubility and provided much better pharmacokinetic properties in preclinical species. Replacement of the dihydrouracil in <b>1</b> with an N-linked uracil provided better potency in the genotype 1 replicon assay. Results from phase 1 clinical studies supported once-daily oral dosing with ABT-072 in HCV infected patients. A phase 2 clinical study that combined ABT-072 with the HCV protease inhibitor ABT-450 provided a sustained virologic response at 24 weeks after dosing (SVR<sub>24</sub>) in 10 of 11 patients who received treatment

    Discovery of ABT-267, a Pan-Genotypic Inhibitor of HCV NS5A

    No full text
    We describe here <i>N</i>-phenylpyrrolidine-based inhibitors of HCV NS5A with excellent potency, metabolic stability, and pharmacokinetics. Compounds with 2<i>S</i>,5<i>S</i> stereochemistry at the pyrrolidine ring provided improved genotype 1 (GT1) potency compared to the 2<i>R</i>,5<i>R</i> analogues. Furthermore, the attachment of substituents at the 4-position of the central <i>N</i>-phenyl group resulted in compounds with improved potency. Substitution with <i>tert</i>-butyl, as in compound <b>38</b> (ABT-267), provided compounds with low-picomolar EC<sub>50</sub> values and superior pharmacokinetics. It was discovered that compound <b>38</b> was a pan-genotypic HCV inhibitor, with an EC<sub>50</sub> range of 1.7–19.3 pM against GT1a, -1b, -2a, -2b, -3a, -4a, and -5a and 366 pM against GT6a. Compound <b>38</b> decreased HCV RNA up to 3.10 log<sub>10</sub> IU/mL during 3-day monotherapy in treatment-naive HCV GT1-infected subjects and is currently in phase 3 clinical trials in combination with an NS3 protease inhibitor with ritonavir (r) (ABT-450/r) and an NS5B non-nucleoside polymerase inhibitor (ABT-333), with and without ribavirin

    Highlights of the Structure–Activity Relationships of Benzimidazole Linked Pyrrolidines Leading to the Discovery of the Hepatitis C Virus NS5A Inhibitor Pibrentasvir (ABT-530)

    No full text
    Curative interferon and ribavirin sparing treatments for hepatitis C virus (HCV)-infected patients require a combination of mechanistically orthogonal direct acting antivirals. A shared component of these treatments is usually an HCV NS5A inhibitor. First generation FDA approved treatments, including the component NS5A inhibitors, do not exhibit equivalent efficacy against HCV virus genotypes 1–6. In particular, these first generation NS5A inhibitors tend to select for viral drug resistance. Ombitasvir is a first generation HCV NS5A inhibitor included as a key component of Viekira Pak for the treatment of patients with HCV genotype 1 infection. Since the launch of next generation HCV treatments, functional cure for genotype 1–6 HCV infections has been achieved, as well as shortened treatment duration across a wider spectrum of genotypes. In this paper, we show how we have modified the anchor, linker, and end-cap architecture of our NS5A inhibitor design template to discover a next generation NS5A inhibitor pibrentasvir (ABT-530), which exhibits potent inhibition of the replication of wild-type genotype 1–6 HCV replicons, as well as improved activity against replicon variants demonstrating resistance against first generation NS5A inhibitors

    Discovery of <i>N</i>‑(4-(2,4-Difluorophenoxy)-3-(6-methyl-7-oxo-6,7-dihydro‑1<i>H</i>‑pyrrolo[2,3‑<i>c</i>]pyridin-4-yl)phenyl)ethanesulfonamide (ABBV-075/Mivebresib), a Potent and Orally Available Bromodomain and Extraterminal Domain (BET) Family Bromodomain Inhibitor

    No full text
    The development of bromodomain and extraterminal domain (BET) bromodomain inhibitors and their examination in clinical studies, particularly in oncology settings, has garnered substantial recent interest. An effort to generate novel BET bromodomain inhibitors with excellent potency and drug metabolism and pharmacokinetics (DMPK) properties was initiated based upon elaboration of a simple pyridone core. Efforts to develop a bidentate interaction with a critical asparagine residue resulted in the incorporation of a pyrrolopyridone core, which improved potency by 9–19-fold. Additional structure–activity relationship (SAR) efforts aimed both at increasing potency and improving pharmacokinetic properties led to the discovery of the clinical candidate <b>63</b> (ABBV-075/mivebresib), which demonstrates excellent potency in biochemical and cellular assays, advantageous exposures and half-life both in animal models and in humans, and in vivo efficacy in mouse models of cancer progression and inflammation

    Fragment-Based, Structure-Enabled Discovery of Novel Pyridones and Pyridone Macrocycles as Potent Bromodomain and Extra-Terminal Domain (BET) Family Bromodomain Inhibitors

    No full text
    Members of the BET family of bromodomain containing proteins have been identified as potential targets for blocking proliferation in a variety of cancer cell lines. A two-dimensional NMR fragment screen for binders to the bromodomains of BRD4 identified a phenyl­pyridazinone fragment with a weak binding affinity (<b>1</b>, <i>K</i><sub>i</sub> = 160 μM). SAR investigation of fragment <b>1</b>, aided by X-ray structure-based design, enabled the synthesis of potent pyridone and macrocyclic pyridone inhibitors exhibiting single digit nanomolar potency in both biochemical and cell based assays. Advanced analogs in these series exhibited high oral exposures in rodent PK studies and demonstrated significant tumor growth inhibition efficacy in mouse flank xenograft models

    Fragment-Based, Structure-Enabled Discovery of Novel Pyridones and Pyridone Macrocycles as Potent Bromodomain and Extra-Terminal Domain (BET) Family Bromodomain Inhibitors

    No full text
    Members of the BET family of bromodomain containing proteins have been identified as potential targets for blocking proliferation in a variety of cancer cell lines. A two-dimensional NMR fragment screen for binders to the bromodomains of BRD4 identified a phenyl­pyridazinone fragment with a weak binding affinity (<b>1</b>, <i>K</i><sub>i</sub> = 160 μM). SAR investigation of fragment <b>1</b>, aided by X-ray structure-based design, enabled the synthesis of potent pyridone and macrocyclic pyridone inhibitors exhibiting single digit nanomolar potency in both biochemical and cell based assays. Advanced analogs in these series exhibited high oral exposures in rodent PK studies and demonstrated significant tumor growth inhibition efficacy in mouse flank xenograft models
    corecore