355 research outputs found

    3D Particle Tracking Velocimetry Method: Advances and Error Analysis

    Get PDF
    A full three-dimensional particle tracking system was developed and tested. By using three separate CCDs placed at the vertices of an equilateral triangle, the threedimensional location of particles can be determined. Particle locations measured at two different times can then be used to create a three-component, three-dimensional velocity field. Key developments are: the ability to accurately process overlapping particle images, offset CCDs to significantly improve effective resolution, allowance for dim particle images, and a hybrid particle tracking technique ideal for three-dimensional flows when only two sets of images exist. An in-depth theoretical error analysis was performed which gives the important sources of error and their effect on the overall system. This error analysis was verified through a series of experiments, which utilized a test target with 100 small dots per square inch. For displacements of 2.54mm the mean errors were less than 2% and the 90% confidence limits were less than 5.2 μm in the plane perpendicular to the camera axis, and 66 μm in the direction of the camera axis. The system was used for flow measurements around a delta wing at an angle of attack. These measurements show the successful implementation of the system for three-dimensional flow velocimetry

    Influence of Wake Model Superposition and Secondary Steering on Model-Based Wake Steering Control with SCADA Data Assimilation

    Get PDF
    Methods for wind farm power optimization through the use of wake steering often rely on engineering wake models due to the computational complexity associated with resolving wind farm dynamics numerically. Within the transient, turbulent atmospheric boundary layer, closed-loop control is required to dynamically adjust to evolving wind conditions, wherein the optimal wake model parameters are estimated as a function of time in a hybrid physics- and data-driven approach using supervisory control and data acquisition (SCADA) data. Analytic wake models rely on wake velocity deficit superposition methods to generalize the individual wake deficit to collective wind farm flow. In this study, the impact of the wake model superposition methodologies on closed-loop control are tested in large eddy simulations of the conventionally neutral atmospheric boundary layer with full Coriolis effects. A model for the non-vanishing lateral velocity trailing a yaw misaligned turbine, termed secondary steering, is also presented, validated, and tested in the closed-loop control framework. Modified linear and momentum conserving wake superposition methodologies increase the power production in closed-loop wake steering control statistically significantly more than linear superposition. While the secondary steering model increases the power production and reduces the predictive error associated with the wake model, the impact is not statistically significant. Modified linear and momentum conserving superposition using the proposed secondary steering model increase a six turbine array power production, compared to baseline control, in large eddy simulations by 7.5% and 7.7%, respectively, with wake model predictive mean absolute errors of 0.03P₁ and 0.04P₁, respectively, where P₁ is the baseline power production of the leading turbine in the array. Ensemble Kalman filter parameter estimation significantly reduces the wake model predictive error for all wake deficit superposition and secondary steering cases compared to predefined model parameters

    Preliminary study and Identification of insects’ species of forensic importance in Urmia, Iran

    Get PDF
    The proper identification of the insect and arthropod species of forensic importance is the most crucial element in the field of forensic entomology. The main objective in this study was the identification of insects’ species of forensic importance in Urmia (37°, 33 N. and 45°, 4, 45 E.) and establishment of a preliminary data-base for forensic entomology purposes in Iran for the first time. A combination of various body viscera and tissues of some of vertebrates (sheep, cow, fish and hen), such as head, paunch, spleen, intestine, derma and liver was exposed in an open land on the private possession for 53 days. Ambient daily temperature (maximum and minimum) and relative humidity values were recorded; and existing keys were used for identification of different species. During the period of study, rainfall was none; average total temperature was 23.77°C; and average of mean RH or average total RH was 46.41%. Five stages of decomposition were recognized. A total of 3179 individuals were collected; belonging to 5 orders (Diptra, Coleoptera, Hymenoptera, Dermaptera and Blattaria), 11 families, 16 genera and 18 species: Psychoda sp, (Dip. Psychodidae), Calliphora vicina (Dip. Calliphoridae),Calliphora vomitoria (Dip. Calliphoridae), Lucilia sericata (Dip. Calliphoridae), Chrysoma sp. (Dip.Calliphoridae), Musca domestica (Dip. Muscidae), Muscina stabulans (Dip. Muscidae), Fannia canicularis (Dip. Fannidae), Sarcophaga haemorrhoidalis (Dip. Sarcophagidae), Sarcophaga sp. (Dip.Sarcophagidae), Wohlfartia magnifica (Dip. Sarcophagidae), Dermestes maculates (Col. Dermestidae), Necrophorus sp.(Col.Silphidae), Blatta orientalis (Blattaria . Blattidae), Vespula germanica (Hym.Vespidae), Messor caducus (Hym. Formicidae), Cataglyphis sp. (Hym. Formicidae) andForficula auricularia (Dermaptera. Forficulidae). The species of Psychoda sp, (Dip. Psychodidae), M. caducus, Cataglyphis sp. (Hym. Formicidae) and F. auricularia (Dermaptera. Forficulidae) are seldomly reported in previous researches; and they were heavily focused to tissues of animals in these studies

    Functional Morphology and Fluid Interactions During Early Development of the Scyphomedusa Aurelia aurita

    Get PDF
    Scyphomedusae undergo a predictable ontogenetic transition from a conserved, universal larval form to a diverse array of adult morphologies. This transition entails a change in bell morphology from a highly discontinuous ephyral form, with deep clefts separating eight discrete lappets, to a continuous solid umbrella-like adult form. We used a combination of kinematic, modeling, and flow visualization techniques to examine the function of the medusan bell throughout the developmental changes of the scyphomedusa Aurelia aurita. We found that flow around swimming ephyrae and their lappets was relatively viscous (1 < Re < 10) and, as a result, ephyral lappets were surrounded by thick, overlapping boundary layers that occluded flow through the gaps between lappets. As medusae grew, their fluid environment became increasingly influenced by inertial forces (10 < Re < 10,000) and, simultaneously, clefts between the lappets were replaced by organic tissue. Hence, although the bell undergoes a structural transition from discontinuous (lappets with gaps) to continuous (solid bell) surfaces during development, all developmental stages maintain functionally continuous paddling surfaces. This developmental pattern enables ephyrae to efficiently allocate tissue to bell diameter increase via lappet growth, while minimizing tissue allocation to inter-lappet spaces that maintain paddle function due to boundary layer overlap

    Seeing the Wind: Visual Wind Speed Prediction with a Coupled Convolutional and Recurrent Neural Network

    Get PDF
    Wind energy resource quantification, air pollution monitoring, and weather forecasting all rely on rapid, accurate measurement of local wind conditions. Visual observations of the effects of wind---the swaying of trees and flapping of flags, for example---encode information regarding local wind conditions that can potentially be leveraged for visual anemometry that is inexpensive and ubiquitous. Here, we demonstrate a coupled convolutional neural network and recurrent neural network architecture that extracts the wind speed encoded in visually recorded flow-structure interactions of a flag and tree in naturally occurring wind. Predictions for wind speeds ranging from 0.75-11 m/s showed agreement with measurements from a cup anemometer on site, with a root-mean-squared error approaching the natural wind speed variability due to atmospheric turbulence. Generalizability of the network was demonstrated by successful prediction of wind speed based on recordings of other flags in the field and in a controlled wind tunnel test. Furthermore, physics-based scaling of the flapping dynamics accurately predicts the dependence of the network performance on the video frame rate and duration.Comment: NeurIPS 2019 (to appear). The dataset has been expanded to include videos of a tree canopy in addition to flags. The models were retrained, and results were updated accordingly. The introduction and related work sections were also expand upon. Clarifying details were added to explain author choices such as time averaging windows and to further discuss test set result

    Seeing the Wind: Visual Wind Speed Prediction with a Coupled Convolutional and Recurrent Neural Network

    Get PDF
    Wind energy resource quantification, air pollution monitoring, and weather forecasting all rely on rapid, accurate measurement of local wind conditions. Visual observations of the effects of wind---the swaying of trees and flapping of flags, for example---encode information regarding local wind conditions that can potentially be leveraged for visual anemometry that is inexpensive and ubiquitous. Here, we demonstrate a coupled convolutional neural network and recurrent neural network architecture that extracts the wind speed encoded in visually recorded flow-structure interactions of a flag and tree in naturally occurring wind. Predictions for wind speeds ranging from 0.75-11 m/s showed agreement with measurements from a cup anemometer on site, with a root-mean-squared error approaching the natural wind speed variability due to atmospheric turbulence. Generalizability of the network was demonstrated by successful prediction of wind speed based on recordings of other flags in the field and in a controlled wind tunnel test. Furthermore, physics-based scaling of the flapping dynamics accurately predicts the dependence of the network performance on the video frame rate and duration

    Visual anemometry: physics-informed inference of wind for renewable energy, urban sustainability, and environmental science

    Full text link
    Accurate measurements of atmospheric flows at meter-scale resolution are essential for a broad range of sustainability applications, including optimal design of wind and solar farms, safe and efficient urban air mobility, monitoring of environmental phenomena such as wildfires and air pollution dispersal, and data assimilation into weather and climate models. Measurement of the relevant microscale wind flows is inherently challenged by the optical transparency of the wind. This review explores new ways in which physics can be leveraged to "see" environmental flows non-intrusively, that is, without the need to place measurement instruments directly in the flows of interest. Specifically, while the wind itself is transparent, its effect can be visually observed in the motion of objects embedded in the environment and subjected to wind -- swaying trees and flapping flags are commonly encountered examples. We describe emerging efforts to accomplish visual anemometry, the task of quantitatively inferring local wind conditions based on the physics of observed flow-structure interactions. Approaches based on first-principles physics as well as data-driven, machine learning methods will be described, and remaining obstacles to fully generalizable visual anemometry will be discussed.Comment: In revie
    corecore