78 research outputs found
A PCR-RFLP method for genotyping of inversion 2Rc in Anopheles coluzzii
Background: Genotyping of polymorphic chromosomal inversions in malaria vectors such as An. coluzzii Coetzee & Wilkerson is important, both because they cause cryptic population structure that can mislead vector analysis and control and because they influence epidemiologically relevant eco-phenotypes. The conventional cytogenetic method of genotyping is an impediment because it is labor intensive, requires specialized training, and can be applied only to one gender and developmental stage. Here, we circumvent these limitations by developing a simple and rapid molecular method of genotyping inversion 2Rc in An. coluzzii that is both economical and field-friendly. This inversion is strongly implicated in temporal and spatial adaptations to climatic and ecological variation, particularly aridity. Methods: Using a set of tag single-nucleotide polymorphisms (SNPs) strongly correlated with inversion orientation, we identified those that overlapped restriction enzyme recognition sites and developed four polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) assays that distinguish alternative allelic states at the tag SNPs. We assessed the performance of these assays using mosquito population samples from Burkina Faso that had been cytogenetically karyotyped as well as genotyped, using two complementary high-throughput molecular methods based on tag SNPs. Further validation was performed using mosquito population samples from additional West African (Benin, Mali, Senegal) and Central African (Cameroon) countries. Results: Of four assays tested, two were concordant with the 2Rc cytogenetic karyotype > 90% of the time in all samples. We recommend that these two assays be employed in tandem for reliable genotyping. By accepting only those genotypic assignments where both assays agree, > 99% of assignments are expected to be accurate. Conclusions: We have developed tandem PCR-RFLP assays for the accurate genotyping of inversion 2Rc in An. coluzzii. Because this approach is simple, inexpensive, and requires only basic molecular biology equipment, it is widely accessible. These provide a crucial tool for probing the molecular basis of eco-phenotypes relevant to malaria epidemiology and vector control. [Figure not available: see fulltext.
Inversion genotyping in the Anopheles gambiae complex using high-throughput array and sequencing platforms
Chromosomal inversion polymorphisms have special importance in the Anopheles gambiae complex of malaria vector mosquitoes, due to their role in local adaptation and range expansion. The study of inversions in natural populations is reliant on polytene chromosome analysis by expert cytogeneticists, a process that is limited by the rarity of trained specialists, low throughput, and restrictive sampling requirements. To overcome this barrier, we ascertained tag single nucleotide polymorphisms (SNPs) that are highly correlated with inversion status (inverted or standard orientation). We compared the performance of the tag SNPs using two alternative high throughput molecular genotyping approaches vs. traditional cytogenetic karyotyping of the same 960 individual An. gambiae and An. coluzzii mosquitoes sampled from Burkina Faso, West Africa. We show that both molecular approaches yield comparable results, and that either one performs as well or better than cytogenetics in terms of genotyping accuracy. Given the ability of molecular genotyping approaches to be conducted at scale and at relatively low cost without restriction on mosquito sex or developmental stage, molecular genotyping via tag SNPs has the potential to revitalize research into the role of chromosomal inversions in the behavior and ongoing adaptation of An. gambiae and An. coluzzii to environmental heterogeneities
Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae
The implementation of successful insecticide resistance management strategies for malaria control is currently hampered by poor understanding of the ïŹtness cost of resistance on mosquito populations, including their mating competiveness. To ïŹll this knowledge gap, coupled and uncoupled Anopheles gambiae s.l. males (all M form (Anopheles coluzzii)) were collected from mating swarms in Burkina Faso. This multiple insecticide resistant population exhibited high 1014F kdrR allele frequencies (460%) and RDLR (480%) in contrast to the Ace-1R allele (o6%). Kdr heterozygote males were more likely to mate than homozygote resistant (OR=2.36; Po0.001), suggesting a negative impact of kdr on An. coluzzii mating ability. Interestingly, heterozygote males were also more competitive than homozygote susceptible (OR=3.26; P=0.006), suggesting a heterozygote advantage effect. Similarly, heterozygote RDLR/RDLS were also more likely to mate than homozygote-resistant males (OR=2.58; P=0.007). Furthermore, an additive mating disadvantage was detected in male homozygotes for both kdr/RDL-resistant alleles. In contrast, no ïŹtness difference was observed for the Ace-1 mutation. Comparative microarray-based genome-wide transcription analysis revealed that metabolic resistance did not signiïŹcantly alter the mating competitiveness of male An. coluzzii mosquitoes. Indeed, no signiïŹcant difference of expression levels was observed for the main metabolic resistance genes, suggesting that metabolic resistance has a limited impact on male mating competiveness. In addition, speciïŹc gene classes/GO terms associated with mating process were detected including sensory perception and peroxidase activity. The detrimental impact of insecticide resistance on mating competiveness observed here suggests that resistance management strategies such as insecticide rotation could help reverse the resistance, if implemented early
Diapause disruption in Cirina butyrospermi Vuillet (Lepidoptera, Attacidae), the shea caterpillar, in Burkina Faso
The shea caterpillar Cirina butyrospermi is an important insect, highly valued as a human food item in Burkina Faso. However, its appearance is seasonal due to its univoltine cycle. This study therefore investigated the possibilities of breaking the nymphal diapause by changing the environmental factors and through the hormonal treatment of prepupae and pupae using bovine insulin and 20-hydroxyecdysone. Changes in humidity and temperature did not result in emergence, suggesting a mandatory nature of the diapause in C. butyrospermi. Injection of 20-hydroxyecdysone between 20 and 40 ng on 20 C. butyrospermi pupae resulted in 15.24 and 47.5% emergence, respectively. The incubation time varied between 40 and 38 days, respectively. No emergence was observed with the injection of bovine insulin. Dipping of C. butyrospermi larvae and pupae in solutions of 20-hydroxyecdysone resulted in similar rates of emergence between the two stages, with slight variations between individual doses: (1) for larvae, emergence was recorded at 10, 8, 5 and 15 mg/l with 98.5, 62.14, 25.73 and 24.16%, respectively; the incubation times varied from 39 days at 5 mg/l to 26 days at 20 mg/l; and (2) for pupae, emergence occurred between 5 and 20 mg/l, with the highest emergence rate recorded at 10, 8 and 15 mg/l with 94.58, 65.83 and 29.58%, respectively; the incubation times varied from 53 days for the lowest dose (5 mg/l) to 37 days (20 mg/l); the best emergence rate of 94.58% coincided with an incubation time of 43 days at 10 mg/l. No emergence was observed beyond 20 mg/l in both stages. Hormonal treatment with 20-hydroxyecdysone did not affect the fecundity of C. butyrospermi, with the fecundity of artificially emerging adults overlapping with that of naturally emerging adults. The emergence rate for both was similar. These results contribute to a better understanding of the physiology of this insect, constituting a breakthrough in its sustainable use as human food
Feeding preferences of the legume pod borer Maruca vitrata (Lepidoptera: Crambidae) larvae and suitability of different flower parts for larval development
With the advent of transgenic Bacillus thuringiensis (Bt)-cowpea, there is a need to identify the feeding preferences of Maruca vitrata Fab. to determine in which component of the plant the expression of the toxin needs to be the highest to ensure the greatest efficacy of insecticidal Bt proteins. In the current study, we examined the feeding preferences of M. vitrata larvae in a naturally infested cowpea field. We also tested, in the laboratory, the suitability of different flower components for the larval development of M. vitrata. Our results indicate that in the field, all types of flowers, regardless of their age, were infested with M. vitrata larvae. The reproductive organs, in the flowers, were the preferred feeding diet for the larvae. Laboratory bioassays confirmed that the reproductive organs were the optimal tissues for M. vitrata larval development. The implications of these findings for transgenic Bt-cowpea are discussed
Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation
<p>Abstract</p> <p>Background</p> <p>The G119S mutation responsible for insensitive acetylcholinesterase resistance to organophosphate and carbamate insecticides has recently been reported from natural populations of <it>Anopheles gambiae </it>in West Africa. These reports suggest there are costs of resistance associated with this mutation for <it>An. gambiae</it>, especially for homozygous individuals, and these costs could be influential in determining the frequency of carbamate resistance in these populations.</p> <p>Methods</p> <p>Life-history traits of the AcerKis and Kisumu strains of <it>An. gambiae </it>were compared following the manipulation of larval food availability in three separate experiments conducted in an insecticide-free laboratory environment. These two strains share the same genetic background, but differ in being homozygous for the presence or absence of the G119S mutation at the <it>ace-1 </it>locus, respectively.</p> <p>Results</p> <p>Pupae of the resistant strain were significantly more likely to die during pupation than those of the susceptible strain. Ages at pupation were significantly earlier for the resistant strain and their dry starved weights were significantly lighter; this difference in weight remained when the two strains were matched for ages at pupation.</p> <p>Conclusions</p> <p>The main cost of resistance found for <it>An. gambiae </it>mosquitoes homozygous for the G119S mutation was that they were significantly more likely to die during pupation than their susceptible counterparts, and they did so across a range of larval food conditions. Comparing the frequency of G119S in fourth instar larvae and adults emerging from the same populations would provide a way to test whether this cost of resistance is being expressed in natural populations of <it>An. gambiae </it>and influencing the dynamics of this resistance mutation.</p
Aging partially restores the efficacy of malaria vector control in insecticide-resistant populations of Anopheles gambiae s.l. from Burkina Faso
<br>Background: The operational impact of insecticide resistance on the effectiveness of long-lasting insecticide nets (LLINs) and indoor residual spraying (IRS) is poorly understood. One factor which may prolong the effectiveness of these tools in the field is the increase in insecticide susceptibility with mosquito age. In this study, LLINs and IRS were tested against young (three to five days) and old (17-19 days) pyrethroid resistant Anopheles gambiae s.l. from Burkina Faso.</br>
<br>Methods: Blood-fed adult Anopheles gambiae s.l. were collected from south-west Burkina Faso and identified to species/form level. Cohorts of the F1 progeny of An. gambiae s.s. S-forms were exposed to deltamethrin (0.05%) at three to five or 17-19 days post-emergence and tested for the frequency of the resistance allele 1014F. Isofemale lines of the M, S- form of An. gambiae s.s. and Anopheles arabiensis were exposed in WHO cone tests to either a) LLINs deployed in households for two years or (b) bendiocarb sprayed walls.</br>
<br>Results: Mortality rates in response to deltamethrin (0.05%) increased from levels indicative of strong resistance in three to five day old F1 mosquitoes, to near full susceptibility in the 17-19 day old cohort. On exposure to LLINs sampled from the field, the mortality rate in isofemale lines was higher in older mosquitoes than young (OR = 5.28, CI 95% = 2.81-9.92), although the mortality estimates were affected by the LLIN tested. In general, the LLINs sampled from the field performed poorly in WHO cone bioassays using either laboratory susceptible or field caught mosquito populations. Finally, there was a clear relationship between mortality and age on exposure to bendiocarb-sprayed walls, with older mosquitoes again proving more susceptible (OR = 3.39, CI 95% = 2.35-4.90).</br>
<br>Conclusions: Age is a key factor determining the susceptibility of mosquitoes to insecticides, not only in laboratory studies, but in response to field-based vector control interventions. This has important implications for understanding the epidemiological impact of resistance. If mosquitoes old enough to transmit malaria are still being suppressed with available insecticides, is resistance potentially having less of an impact than often assumed? However, the poor performance of LLINs used in this study in Burkina Faso, is a cause for concern and requires urgent investigation.</br>
Field efficacy of a new mosaic long-lasting mosquito net (PermaNetÂź 3.0) against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa
<p>Abstract</p> <p>Background</p> <p>Due to the spread of pyrethroid-resistance in malaria vectors in Africa, new strategies and tools are urgently needed to better control malaria transmission. The aim of this study was to evaluate the performances of a new mosaic long-lasting insecticidal net (LLIN), i.e. PermaNet<sup>Ÿ </sup>3.0, against wild pyrethroid-resistant <it>Anopheles gambiae s.l</it>. in West and Central Africa.</p> <p>Methods</p> <p>A multi centre experimental hut trial was conducted in Malanville (Benin), Vallée du Kou (Burkina Faso) and Pitoa (Cameroon) to investigate the exophily, blood feeding inhibition and mortality induced by PermaNet<sup>Ÿ </sup>3.0 (i.e. a mosaic net containing piperonyl butoxide and deltamethrin on the roof) comparatively to the WHO recommended PermaNet<sup>Ÿ </sup>2.0 (unwashed and washed 20-times) and a conventionally deltamethrin-treated net (CTN).</p> <p>Results</p> <p>The personal protection and insecticidal activity of PermaNet 3.0 and PermaNet<sup>Ÿ </sup>2.0 were excellent (>80%) in the "pyrethroid-tolerant" area of Malanville. In the pyrethroid-resistance areas of Pitoa (metabolic resistance) and Vallée du Kou (presence of the L1014F <it>kdr </it>mutation), PermaNet<sup>Ÿ </sup>3.0 showed equal or better performances than PermaNet<sup>Ÿ </sup>2.0. It should be noted however that the deltamethrin content on PermaNet<sup>Ÿ </sup>3.0 was up to twice higher than that of PermaNet<sup>Ÿ </sup>2.0. Significant reduction of efficacy of both LLIN was noted after 20 washes although PermaNet<sup>Ÿ </sup>3.0 still fulfilled the WHO requirement for LLIN.</p> <p>Conclusion</p> <p>The use of combination nets for malaria control offers promising prospects. However, further investigations are needed to demonstrate the benefits of using PermaNet<sup>Ÿ </sup>3.0 for the control of pyrethroid resistant mosquito populations in Africa.</p
Efficacy of PermaNetÂź 2.0 and PermaNetÂź 3.0 against insecticide-resistant Anopheles gambiae in experimental huts in CĂŽte d'Ivoire
<p>Abstract</p> <p>Background</p> <p>Pyrethroid resistance in vectors could limit the efficacy of long-lasting insecticidal nets (LLINs) because all LLINs are currently treated with pyrethroids. The goal of this study was to evaluate the efficacy and wash resistance of PermaNet<sup>Âź </sup>3.0 compared to PermaNet<sup>Âź </sup>2.0 in an area of high pyrethroid in CĂŽte d'Ivoire. PermaNet<sup>Âź </sup>3.0 is impregnated with deltamethrin at 85 mg/m<sup>2 </sup>on the sides of the net and with deltamethrin and piperonyl butoxide on the roof. PermaNet<sup>Âź </sup>2.0 is impregnated with deltamethrin at 55 mg/m<sup>2 </sup>across the entire net.</p> <p>Methods</p> <p>The study was conducted in the station of Yaokoffikro, in central CĂŽte d'Ivoire. The efficacy of intact unwashed and washed LLINs was compared over a 12-week period with a conventionally-treated net (CTN) washed to just before exhaustion. WHO cone bioassays were performed on sub-sections of the nets, using wild-resistant <it>An. gambiae </it>and Kisumu strains. Mosquitoes were collected five days per week and were identified to genus and species level and classified as dead or alive, then unfed or blood-fed.</p> <p>Results</p> <p>Mortality rates of over 80% from cone bioassays with wild-caught pyrethroid-resistant <it>An. gambiae </it>s.s were recorded only with unwashed PermaNet<sup>Âź </sup>3.0. Over 12 weeks, a total of 7,291 mosquitoes were collected. There were significantly more <it>An. gambiae </it>s.s. and <it>Culex </it>spp. caught in control huts than with other treatments (P < 0.001). The proportion of mosquitoes exiting the huts was significantly lower with the control than for the treatment arms (P < 0.001). Mortality rates with resistant <it>An. gambiae </it>s.s and <it>Culex </it>spp, were lower for the control than for other treatments (P < 0.001), which did not differ (P > 0.05) except for unwashed PermaNet<sup>Âź </sup>3.0 (P < 0.001), which gave significantly higher mortality (P < 0.001).</p> <p>Conclusions</p> <p>This study showed that unwashed PermaNet<sup>Âź </sup>3.0 caused significantly higher mortality against pyrethroid resistant <it>An. gambiae s.s </it>and <it>Culex </it>spp than PermaNet<sup>Âź </sup>2.0 and the CTN. The increased efficacy with unwashed PermaNet<sup>Âź </sup>3.0 over PermaNet<sup>Âź </sup>2.0 and the CTN was also demonstrated by higher KD and mortality rates (KD > 95% and mortality rate > 80%) in cone bioassays performed with wild pyrethroid-resistant <it>An. gambiae s.s </it>from Yaokoffikro.</p
Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa
<p>Abstract</p> <p>Background</p> <p>Insecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. This study reported the spatial and seasonal variations of insecticide resistance in malaria vectors in Benin, West Africa.</p> <p>Methods</p> <p><it>Anopheles gambiae s.l </it>populations were collected from October 2008 to June 2010 in four sites selected on the basis of different use of insecticides and environment. WHO susceptibility tests were carried out to detect resistance to DDT, fenitrothion, bendiocarb, permethrin and deltamethrin. The synergist piperonyl butoxide was used to assess the role of non-target site mechanisms in pyrethroid resistance. <it>Anopheles gambiae </it>mosquitoes were identified to species and to molecular M and S forms using PCR techniques. Molecular and biochemical assays were carried out to determine <it>kdr </it>and <it>Ace.1<sup>R </sup></it>allelic frequencies and activity of the detoxification enzymes.</p> <p>Results</p> <p>Throughout the surveys very high levels of mortality to bendiocarb and fenitrothion were observed in <it>An. gambiae s.l</it>. populations. However, high frequencies of resistance to DDT and pyrethroids were seen in both M and S form of <it>An. gambiae s.s</it>. and <it>Anopheles arabiensis</it>. PBO increased the toxicity of permethrin and restored almost full susceptibility to deltamethrin. <it>Anopheles gambiae s.l</it>. mosquitoes from Cotonou and Malanville showed higher oxidase activity compared to the Kisumu susceptible strain in 2009, whereas the esterase activity was higher in the mosquitoes from Bohicon in both 2008 and 2009. A high frequency of <it>1014F kdr </it>allele was initially showed in <it>An. gambiae </it>from Cotonou and Tori-Bossito whereas it increased in mosquitoes from Bohicon and Malanville during the second year. For the first time the <it>L1014S kdr </it>mutation was found in <it>An. arabiensis </it>in Benin. The <it>ace.1<sup>R </sup></it>mutation was almost absent <it>in An. gambiae s.l</it>.</p> <p>Conclusion</p> <p>Pyrethroid and DDT resistance is widespread in malaria vector in Benin and both metabolic and target site resistance are implicated. Resistance was not correlated with a change of malaria species and/or molecular forms. The <it>1014S kdr </it>allele was first identified in wild population of <it>An. arabiensis </it>hence confirming the expansion of pyrethroid resistance alleles in Africa.</p
- âŠ