209 research outputs found
Technical note: Reanalysis of Aura MLS chemical observations
This paper presents a reanalysis of the atmospheric chemical composition from the upper troposphere to the lower mesosphere from August 2004 to December 2017. This reanalysis is produced by the Belgian Assimilation System for Chemical ObsErvations (BASCOE) constrained by the chemical observations from the Microwave Limb Sounder (MLS) on board the Aura satellite. BASCOE is based on the ensemble Kalman filter (EnKF) method and includes a chemical transport model driven by the winds and temperature from the ERA-Interim meteorological reanalysis. The model resolution is 3.75∘ in longitude, 2.5∘ in latitude and 37 vertical levels from the surface to 0.1 hPa with 25 levels above 100 hPa. The outputs are provided every 6 h. This reanalysis is called BRAM2 for BASCOE Reanalysis of Aura MLS, version 2. Vertical profiles of eight species from MLS version 4 are assimilated and are evaluated in this paper: ozone (O3), water vapour (H2O), nitrous oxide (N2O), nitric acid (HNO3), hydrogen chloride (HCl), chlorine oxide (ClO), methyl chloride (CH3Cl) and carbon monoxide (CO). They are evaluated using independent observations from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and N2O observations from a different MLS radiometer than the one used to deliver the standard product and ozonesondes. The evaluation is carried out in four regions of interest where only selected species are evaluated. These regions are (1) the lower-stratospheric polar vortex where O3, H2O, N2O, HNO3, HCl and ClO are evaluated; (2) the upper-stratospheric–lower-mesospheric polar vortex where H2O, N2O, HNO3 and CO are evaluated; (3) the upper troposphere–lower stratosphere (UTLS) where O3, H2O, CO and CH3Cl are evaluated; and (4) the middle stratosphere where O3, H2O, N2O, HNO3, HCl, ClO and CH3Cl are evaluated. In general BRAM2 reproduces MLS observations within their uncertainties and agrees well with independent observations, with several limitations discussed in this paper (see the summary in Sect. 5.5). In particular, ozone is not assimilated at altitudes above (i.e. pressures lower than) 4 hPa due to a model bias that cannot be corrected by the assimilation. MLS ozone profiles display unphysical oscillations in the tropical UTLS, which are corrected by the assimilation, allowing a good agreement with ozonesondes. Moreover, in the upper troposphere, comparison of BRAM2 with MLS and independent observations suggests a positive bias in MLS O3 and a negative bias in MLS H2O. The reanalysis also reveals a drift in MLS N2O against independent observations, which highlights the potential use of BRAM2 to estimate biases between instruments. BRAM2 is publicly available and will be extended to assimilate MLS observations after 2017.publishedVersio
The GOME-type Tropical Tropospheric Ozone Essential Climate Variable (GTTO-ECV) satellite data record between 1995 and 2023
A tropospheric ozone Climate Data Record from 1995 until end 2023 has been generated within ESA’s Climate Change Initiative programme. The GOME-type Tropical Tropospheric Ozone Essential Climate Variable (GTTO-ECV) satellite data record combines data from GOME, SCIAMACHY, OMI, the three GOME-2 missions and TROPOMI. The retrieval is based on the Convective Cloud Differential technique, which limits the coverage to the tropical belt (20°S to 20°N). We generated two monthly mean data sets at 1° x 1° resolution: one corresponds to a tropospheric column up to 200 hPa as in the previous CCI data release (Heue et al., 2016), while the other is limited to 270 hPa this pressure level is used in the operational S5P data set. Besides a consistent reprocessing of the CCD data for individual sensors, we also updated the harmonising scheme. The mean bias as well as the mean annual cycle relative to the reference instrument (OMI) are used to correct for the differences between the sensors.
Heue et al (2016) inferred a mean tropospheric ozone trend of +0.7±0.1 DU/decade (1995-2015) from the previous GTTO-ECV version. Did the trend change with the extended and improved data set? The GTTO-ECV data record will be used to investigate the tropical mean trend as well as temporal and local changes in the trends or extreme events
On the improved stability of the version 7 MIPAS ozone record
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was an infrared limb emission spectrometer on the Envisat platform. From 2002 to 2012, it performed pole-to-pole measurements during day and night, producing more than 1000 profiles per day. The European Space Agency (ESA) recently released the new version 7 of Level 1B MIPAS spectra, in which a new set of time-dependent correction coefficients for the nonlinearity in the detector response functions was implemented. This change is expected to reduce the long-term drift of the MIPAS Level 2 data. We evaluate the long-term stability of ozone Level 2 data retrieved from MIPAS v7 Level 1B spectra with the IMK/IAA scientific level 2 processor. For this, we compare MIPAS data with ozone measurements from the Microwave Limb Sounder (MLS) instrument on NASA\u27s Aura satellite, ozonesondes and ground-based lidar instruments. The ozonesondes and lidars alone do not allow us to conclude with enough significance that the new version is more stable than the previous one, but a clear improvement in long-term stability is observed in the satellite-data-based drift analysis. The results of ozonesondes, lidars and satellite drift analysis are consistent: all indicate that the drifts of the new version are less negative/more positive nearly everywhere above 15km. The 10-year MIPAS ozone trends calculated from the old and the new data versions are compared. The new trends are closer to old drift-corrected trends than the old uncorrected trends were. From this, we conclude that the nonlinearity correction performed on Level 1B data is an improvement. These results indicate that MIPAS data are now even more suited for trend studies, alone or as part of a merged data record
The FDR4ATMOS Project
The FDR4ATMOS project has two main tasks. The focus of task A is to update the SCIAMACHY processing chain for better Ozone total columns. After the full re-processing of the SCIAMACHY mission with processor versions 9 (Level 1) and version 7 (Level 2), the comparison with ground-based data showed that the total Ozone column showed a downward trend of nearly 2% from the
beginning of the time series to its end. This trend is an artefact and is likely caused by changes made to the calibration algorithms in the Level 1 processor (the DOAS retrieval algorithm for Ozone was not changed). The most likely reason are changes in the degradation correction that lead
to subtle changes in the spectral structures that in the retrieval are interpreted as an atmospheric signature. In task A we will update the Level 0-1 processor with the final aim of a mission re-processing.
The second task in the FDR4ATMOS project is to develop a cross-instrument Level 1 product for GOME-1 and SCIAMACHY for the UV, VIS and NIR spectral range with a focus on the spectral windows used for O3, SO2, NO2 total column retrieval and the determination of cloud properties.
Contrary to other projects, FDR4ATMOS does not aim to build a harmonised time series on Level 2 products but on Level 1 products, i.e. radiances and reflectances. The GOME-1 and SCIAMACHY instrument together span 17 years of spectrally highly resolved data. The goal of the FDR4ATMOS
project is to generate harmonised data sets that allow the user to use it directly in long term trend analysis, independent of the instrument. Since this was never done for highly resolved spectrometers, new methods have to be developed that e.g. take into account the different observation geometries and observation times of the instrument without impacting the spectral
structures that are used for the retrieval of the atmospheric species. The resulting algorithms and the processor should also be as generic as possible to be able to transfer the methodology easily to other instruments (e.g. GOME-2, Sentinel-5p) for a future extension of the time series.
The FDR4ATMOS started in October 2019 and is currently in phase 1. We will present the goals of the project and first results
The novel GOME-type Ozone Profile Essential Climate Variable (GOP-ECV) from the European Space Agency's Climate Change Initiative+ ozone project
Smoking, Alcohol Intake and Torque Teno Virus in Stable Kidney Transplant Recipients
Torque Teno Virus (TTV) is a non-pathogenic virus that is highly prevalent among kidney transplant recipients (KTRs). Its circulating load is associated with an immunological status in KTR and is considered a promising tool for guiding immunosuppression. To allow for optimal guidance, it is important to identify other determinants of TTV load. We aimed to investigate the potential association of smoking and alcohol intake with TTV load. For this cross-sectional study, serum TTV load was measured using PCR in stable kidney transplant recipients at ≥1 year after transplantation, and smoking status and alcohol intake were assessed through questionnaires and measurements of urinary cotinine and ethyl glucuronide. A total of 666 KTRs were included (57% male). A total of 549 KTR (82%) had a detectable TTV load (3.1 ± 1.5 log 10 copies/mL). In KTR with a detectable TTV load, cyclosporin and tacrolimus use were positively associated with TTV load (St. β = 0.46, p < 0.001 and St. β = 0.66, p < 0.001, respectively), independently of adjustment for potential confounders. Current smoking and alcohol intake of >20 g/day were negatively associated with TTV load (St. β = -0.40, p = 0.004 and St. β = -0.33, p = 0.009, respectively), independently of each other and of adjustment for age, sex, kidney function, time since transplantation and calcineurin inhibitor use. This strong association of smoking and alcohol intake with TTV suggests a need to account for the smoking status and alcohol intake when applying TTV guided immunosuppression in KTR. </p
Updated merged SAGE-CCI-OMPS+ dataset for the evaluation of ozone trends in the stratosphere
In this paper, we present the updated SAGE-CCI-OMPS+ climate data record of monthly zonal mean ozone profiles. This dataset covers the stratosphere and combines measurements by nine limb and occultation satellite instruments – SAGE II (Stratospheric Aerosol and Gases Experiment II), OSIRIS (Optical Spectrograph and InfraRed Imaging System), MIPAS (Michelson Interferometer for Passive Atmospheric Sounding), SCIAMACHY (SCanning Imaging Spectrometer for Atmospheric CHartographY), GOMOS (Global Ozone Monitoring by Occultation of Stars), ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), OMPS-LP (Ozone Monitor Profiling Suite Limb Profiler), POAM (Polar Ozone and Aerosol Measurement) III, and SAGE III/ISS (Stratospheric Aerosol and Gases Experiment III on the International Space Station). Compared to the original version of the SAGE-CCI-OMPS dataset (Sofieva et al., 2017b), the update includes new versions of MIPAS, ACE-FTS, and OSIRIS datasets and introduces data from additional sensors (POAM III and SAGE III/ISS) and retrieval processors (OMPS-LP).
In this paper, we show detailed intercomparisons of ozone profiles from different instruments and data versions, with a focus on the detection of possible drifts in the datasets. The SAGE-CCI-OMPS+ dataset has a better coverage of polar regions and of the upper troposphere and the lower stratosphere (UTLS) than the previous dataset.
We also studied the influence of including new datasets on ozone trends, which are estimated using multiple linear regression. The changes in the merged dataset do not change the overall morphology of post-1997 ozone trends; statistically significant trends are observed in the upper stratosphere. The largest changes in ozone trends are observed in polar regions, especially in the Southern Hemisphere
- …
