837 research outputs found

    Optically-Nonactive Assorted Helices Array with Interchangeable Magnetic/Electric Resonance

    Full text link
    We report here the designing of optically-nonactive metamaterial by assembling metallic helices with different chirality. With linearly polarized incident light, pure electric or magnetic resonance can be selectively realized, which leads to negative permittivity or negative permeability accordingly. Further, we show that pure electric or magnetic resonance can be interchanged at the same frequency band by merely changing the polarization of incident light for 90 degrees. This design demonstrates a unique approach to construct metamaterial.Comment: 15 pages, 4 figure

    Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers

    Get PDF
    Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid) (PLGA) conduits and neurotrophin-3 (NT-3) to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs) and Schwann cells (SCs) were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80%) were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury

    Calibration of the Timing Performance of GECAM-C

    Full text link
    As a new member of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) after GECAM-A and GECAM-B, GECAM-C (originally called HEBS), which was launched on board the SATech-01 satellite on July 27, 2022, aims to monitor and localize X-ray and gamma-ray transients from ∼\sim 6 keV to 6 MeV. GECAM-C utilizes a similar design to GECAM but operates in a more complex orbital environment. In this work, we utilize the secondary particles simultaneously produced by the cosmic-ray events on orbit and recorded by multiple detectors, to calibrate the relative timing accuracy between all detectors of GECAM-C. We find the result is 0.1 μs\mu \rm s, which is the highest time resolution among all GRB detectors ever flown and very helpful in timing analyses such as minimum variable timescale and spectral lags, as well as in time delay localization. Besides, we calibrate the absolute time accuracy using the one-year Crab pulsar data observed by GECAM-C and Fermi/GBM, as well as GECAM-C and GECAM-B. The results are 2.02±2.26 μs2.02\pm 2.26\ \mu \rm s and 5.82±3.59 μs5.82\pm 3.59\ \mu \rm s, respectively. Finally, we investigate the spectral lag between the different energy bands of Crab pulsar observed by GECAM and GBM, which is ∼−0.2 μs keV−1\sim -0.2\ {\rm \mu s\ keV^{-1}}.Comment: submitte

    Laboratory observation of ion acceleration via reflection off laser-produced magnetized collisionless shocks

    Full text link
    Fermi acceleration by collisionless shocks is believed to be the primary mechanism to produce high energy charged particles in the Universe,where charged particles gain energy successively from multiple reflections off the shock front.Here,we present the first direct experimental evidence of ion energization from reflection off a supercritical quasi perpendicular collisionless shock,an essential component of Fermi acceleration in a laser produced magnetized plasma. We observed a quasi monoenergetic ion beam with 2,4 times the shock velocity in the upstream flow using time of flight method. Our related kinetic simulations reproduced the energy gain and showed that these ions were first reflected and then accelerated mainly by the motional electric field associated with the shock. This mechanism can also explain the quasi monoenergetic fast ion component observed in the Earth's bow shock

    Ground calibration of Gamma-Ray Detectors of GECAM-C

    Full text link
    As a new member of GECAM mission, GECAM-C (also named High Energy Burst Searcher, HEBS) was launched onboard the SATech-01 satellite on July 27th, 2022, which is capable to monitor gamma-ray transients from ∼\sim 6 keV to 6 MeV. As the main detector, there are 12 gamma-ray detectors (GRDs) equipped for GECAM-C. In order to verify the GECAM-C GRD detector performance and to validate the Monte Carlo simulations of detector response, comprehensive on-ground calibration experiments have been performed using X-ray beam and radioactive sources, including Energy-Channel relation, energy resolution, detection efficiency, SiPM voltage-gain relation and the non-uniformity of positional response. In this paper, the detailed calibration campaigns and data analysis results for GECAM-C GRDs are presented, demonstrating the excellent performance of GECAM-C GRD detectors.Comment: third versio

    The Interleukin 3 Gene (IL3) Contributes to Human Brain Volume Variation by Regulating Proliferation and Survival of Neural Progenitors

    Get PDF
    One of the most significant evolutionary changes underlying the highly developed cognitive abilities of humans is the greatly enlarged brain volume. In addition to being far greater than in most other species, the volume of the human brain exhibits extensive variation and distinct sexual dimorphism in the general population. However, little is known about the genetic mechanisms underlying normal variation as well as the observed sex difference in human brain volume. Here we show that interleukin-3 (IL3) is strongly associated with brain volume variation in four genetically divergent populations. We identified a sequence polymorphism (rs31480) in the IL3 promoter which alters the expression of IL3 by affecting the binding affinity of transcription factor SP1. Further analysis indicated that IL3 and its receptors are continuously expressed in the developing mouse brain, reaching highest levels at postnatal day 1–4. Furthermore, we found IL3 receptor alpha (IL3RA) was mainly expressed in neural progenitors and neurons, and IL3 could promote proliferation and survival of the neural progenitors. The expression level of IL3 thus played pivotal roles in the expansion and maintenance of the neural progenitor pool and the number of surviving neurons. Moreover, we found that IL3 activated both estrogen receptors, but estrogen didn’t directly regulate the expression of IL3. Our results demonstrate that genetic variation in the IL3 promoter regulates human brain volume and reveals novel roles of IL3 in regulating brain development
    • …
    corecore