14,505 research outputs found

    Detecting the orbital character of the spin fluctuation in the Iron-based superconductors with the resonant inelastic X-ray scattering spectroscopy

    Full text link
    The orbital distribution of the spin fluctuation in the iron-based superconductors(IBSs) is the key information needed to understand the magnetism, superconductivity and electronic nematicity in these multi-orbital systems. In this work, we propose that the resonant inelastic X-ray scattering(RIXS) technique can be used to probe selectively the spin fluctuation on different Fe 3d3d orbitals. In particular, the spin fluctuation on the three t2gt_{2g} orbitals, namely, the 3dxz3d_{xz}, 3dyz3d_{yz} and the 3dxy3d_{xy} orbital, can be selectively probed in the σ→π′\sigma\rightarrow\pi' scattering geometry by aligning the direction of the outgoing photon in the yy, xx and zz direction. Such orbital-resolved information on the spin fluctuation is invaluable for the study of the orbital-selective physics in the IBSs and can greatly advance our understanding on the relation between orbital ordering and spin nematicity in the IBSs and the orbital-selective pairing mechanism in these multi-orbital systems.Comment: 6 pages with new and more informative figures, the explicit form of the RIXS matrix element is provided, and the discussion part has been rewritte

    Vanishing pseudogap around (Ï€,0)(\pi,0) in an electron-doped high-Tc\mathrm{T_{c}} superconductor: a simple picture

    Full text link
    Recent ARPES measurement on electron-doped cuprate Pr1.3−xLa0.7CexCuO4\mathrm{Pr}_{1.3-x}\mathrm{La}_{0.7}\mathrm{Ce}_{x}\mathrm{CuO}_{4} finds that the pseudogap along the boundary of the antiferromagnetic Brillouin zone(AFBZ) exhibits dramatic momentum dependence. In particular, the pseudogap vanishes in a finite region around the anti-nodal point, in which a single broadened peak emerges at the un-renormalized quasiparticle energy. Such an observation is argued to be inconsistent with the antiferromagnetic(AFM) band-folding picture, which predicts a constant pseudogap along the AFBZ boundary. On the other hand, it is claimed that the experimental results are consistent with the prediction of the cluster dynamical mean field theory(CDMFT) simulation on the Hubbard model, in which the pseudogap is interpreted as a s-wave splitting between the Hubbard bands and the in-gap states. Here we show that the observed momentum dependence of the pseudogap is indeed consistent with AFM band-folding picture, provided that we assume the existence of a strongly momentum dependent quasiparticle scattering rate. More specifically, we show that the quasiparticle scattering rate acts to reduce the spectral gap induced by AFM band-folding effect. The new quasiparticle poles corresponding to the AF-split bands can even be totally eliminated when the scattering rate exceeds the bare band folding gap, leaving the system with a single pole at the un-renormalized quasiparticle energy. We predict that the pseudogap should close in a square root fashion as we move toward (π,0)(\pi,0) along the AFBZ boundary. Our results illustrates again that the quasiparticle scattering rate can play a much more profound role than simply broadening the quasiparticle peak in the quasiparticle dynamics of strongly correlated electron systems.Comment: 5 pages, 2 figures, new references adde

    Miniature High-Sensitivity High-Temperature Fiber Sensor with a Dispersion Compensation Fiber-Based Interferometer

    Get PDF
    A miniature high-sensitivity, high-temperature fiber sensor with an interferometer based on a bare small-core-diameter dispersion compensation fiber (DCF) is reported. The sensing head is a single-mode-fiber (SMF) DCF configuration formed by a 4 mm long bare DCF with one end connected to the SMF by a fusion splicing technique and the other end cleaved. Due to the large mode index difference and high thermo-optic coefficient induced by two dominative interference modes, a miniature high-temperature fiber sensor with a high sensitivity of 68.6 pm/°C is obtained by monitoring the wavelength shift of the interference spectrum. This type of sensor has the features of small size, high sensitivity, high stability, simple structure, and low cost

    Dynamic Polarization Effects in Ion Channeling Through Single-Well Carbon Nanotubs

    Get PDF
    Ion channeling through a single-wall carbon nanotube is simulated by solving Newton’s equations for ion motion at intermediate energies, under the action of both the surface-atom repulsive forces and the polarization forces due to the dynamic perturbation of the nanotube electrons. The atomic repulsion is described by a continuum potential based on the Thomas-Fermi-Moliere model, whereas the dynamic polarization of the nanotube electrons is described by a two-dimensional hydrodynamic model, giving rise to the transverse dynamic image force and the longitudinal stopping force. In the absence of centrifugal forces, a balance between the image force and the atomic repulsion is found to give rise to ion trajectories which oscillate over peripheral radial regions in the nanotube, provided the ion impact position is not too close to the nanotube wall, the impact angle is sufficiently small, and the incident speed is not too high. Otherwise, the ion is found to oscillate between the nanotube walls, passing over a local maximum of the potential in the center of the nanotube, which results from the image interaction. The full statistical analysis of 103 ion trajectories has been made to further demonstrate the actual effect of dynamic polarization on the ion channeling

    Simultaneous Measurement for Strain and Temperature Using Fiber Bragg Gratings and Multimode Fibers

    Get PDF
    An all-fiber sensor capable of simultaneous measurement of temperature and strain is newly presented. The sensing head is formed by a fiber Bragg grating combined with a section of multimode fiber that acts as a Mach-Zehnder interferometer for temperature and strain discrimination. The strain and temperature coefficients of multimode fibers vary with the core sizes and materials. This feature can be used to improve the strain and temperature resolution by suitably choosing the multimode fiber. For a 10 pm wavelength resolution, a resolution of 9.21 μ∈ in strain and 0.26°C in temperature can be achieved

    P−v{\cal P}-v Criticality in Gauged Supergravities

    Full text link
    AdS black holes show richer transition behaviors in extended phase space by assuming the cosmological constant and its conjugate quantity to behave like thermodynamic pressure and thermodynamic volume. We study the extended thermodynamics of charged dilatonic AdS black holes in a class of Einstein-Maxwell-dilaton theories that can be embedded in gauged supergravities in various dimensions. We find that the transition behaviors of higher dimensional dilatonic AdS black holes are different from the four dimensional counterparts, and new transition behaviors emerges in higher dimensions. First, there exists standard Van der Waals transition only in a five dimensional dilatonic AdS black hole with two equal charges. Second, there emerge a new phase transition branch in negative pressure region in six and seven dimensional dilatonic black holes with two equal charges. Third, there emerge transition behaviors in higher dimensional black hole with single charge cases, which are absent in four dimensions.Comment: Latex, 18 pages, 8 figures; published versio

    GRB/GW association: Long-short GRB candidates, time-lag, measuring gravitational wave velocity and testing Einstein's equivalence principle

    Full text link
    Short-duration gamma-ray bursts (SGRBs) are widely believed to be powered by the mergers of compact binaries, such as binary neutron stars or possibly neutron star-black hole binaries. Though the prospect of detecting SGRBs with gravitational wave (GW) signals by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/VIRGO network is promising, no known SGRB has been found within the expected advanced LIGO/VIRGO sensitivity range for binary neutron star systems. We find, however, that the two long-short GRBs (GRB 060505 and GRB 060614) may be within the horizon of advanced GW detectors. In the upcoming era of GW astronomy, the merger origin of some long-short GRBs, as favored by the macronova signature displayed in GRB 060614, can be unambiguously tested. The model-dependent time lags between the merger and the onset of the prompt emission of the GRB are estimated. The comparison of such time lags between model predictions and the real data expected in the era of the GW astronomy would be helpful in revealing the physical processes taking place at the central engine (including the launch of the relativistic outflow, the emergence of the outflow from the dense material ejected during the merger, and the radiation of gamma rays). We also show that the speed of GWs, with or without a simultaneous test of Einstein's equivalence principle, can be directly measured to an accuracy of ∼3×10−8 cm s−1\sim 3\times 10^{-8}~{\rm cm~s^{-1}} or even better in the advanced LIGO/VIRGO era. The Astrophysical Journal, VolumeComment: 12 pages, 3 figures, published in The Astrophysical Journa
    • …
    corecore