25,744 research outputs found
A Fast and Accurate Nonlinear Spectral Method for Image Recognition and Registration
This article addresses the problem of two- and higher dimensional pattern
matching, i.e. the identification of instances of a template within a larger
signal space, which is a form of registration. Unlike traditional correlation,
we aim at obtaining more selective matchings by considering more strict
comparisons of gray-level intensity. In order to achieve fast matching, a
nonlinear thresholded version of the fast Fourier transform is applied to a
gray-level decomposition of the original 2D image. The potential of the method
is substantiated with respect to real data involving the selective
identification of neuronal cell bodies in gray-level images.Comment: 4 pages, 3 figure
Properties of Very Luminous Galaxies
Recent analysis of the SSRS2 data based on cell-counts and two-point
correlation function has shown that very luminous galaxies are much more
strongly clustered than fainter galaxies. In fact, the amplitude of the
correlation function of very luminous galaxies () asymptotically
approaches that of clusters. In this paper we investigate the
properties of the most luminous galaxies, with blue absolute magnitude . We find that: 1) the population mix is comparable to that in other ranges
of absolute magnitudes; 2) only a small fraction are located in bona fide
clusters; 3) the bright galaxy-cluster cross-correlation function is
significantly higher on large scales than that measured for fainter galaxies;
4) the correlation length of galaxies brighter than \MB ,
expressed as a function of the mean interparticle distance, appears to follow
the universal dimensionless correlation function found for clusters and radio
galaxies; 5) a large fraction of the bright galaxies are in interacting pairs,
others show evidence for tidal distortions, while some appear to be surrounded
by faint satellite galaxies. We conclude that very luminous optical galaxies
differ from the normal population of galaxies both in the clustering and other
respects. We speculate that this population is highly biased tracers of mass,
being associated to dark halos with masses more comparable to clusters than
typical loose groups.Comment: 29 pages (6 figures) + 2 tables; paper with all figures and images
available at http://boas5.bo.astro.it/~cappi/papers.html; The Astronomical
Journal, in pres
Labels for non-individuals
Quasi-set theory is a first order theory without identity, which allows us to
cope with non-individuals in a sense. A weaker equivalence relation called
``indistinguishability'' is an extension of identity in the sense that if
is identical to then and are indistinguishable, although the
reciprocal is not always valid. The interesting point is that quasi-set theory
provides us a useful mathematical background for dealing with collections of
indistinguishable elementary quantum particles. In the present paper, however,
we show that even in quasi-set theory it is possible to label objects that are
considered as non-individuals. We intend to prove that individuality has
nothing to do with any labelling process at all, as suggested by some authors.
We discuss the physical interpretation of our results.Comment: 11 pages, no figure
Neuromorphometric characterization with shape functionals
This work presents a procedure to extract morphological information from
neuronal cells based on the variation of shape functionals as the cell geometry
undergoes a dilation through a wide interval of spatial scales. The targeted
shapes are alpha and beta cat retinal ganglion cells, which are characterized
by different ranges of dendritic field diameter. Image functionals are expected
to act as descriptors of the shape, gathering relevant geometric and
topological features of the complex cell form. We present a comparative study
of classification performance of additive shape descriptors, namely, Minkowski
functionals, and the nonadditive multiscale fractal. We found that the proposed
measures perform efficiently the task of identifying the two main classes alpha
and beta based solely on scale invariant information, while also providing
intraclass morphological assessment
What are the Best Hierarchical Descriptors for Complex Networks?
This work reviews several hierarchical measurements of the topology of
complex networks and then applies feature selection concepts and methods in
order to quantify the relative importance of each measurement with respect to
the discrimination between four representative theoretical network models,
namely Erd\"{o}s-R\'enyi, Barab\'asi-Albert, Watts-Strogatz as well as a
geographical type of network. The obtained results confirmed that the four
models can be well-separated by using a combination of measurements. In
addition, the relative contribution of each considered feature for the overall
discrimination of the models was quantified in terms of the respective weights
in the canonical projection into two dimensions, with the traditional
clustering coefficient, hierarchical clustering coefficient and neighborhood
clustering coefficient resulting particularly effective. Interestingly, the
average shortest path length and hierarchical node degrees contributed little
for the separation of the four network models.Comment: 9 pages, 4 figure
Estudo morfológico de Mansoa standleyi (Steyerm.) A. H. gentry (Bignoniaceae).
O trabalho teve como objetivo descrever morfologicamente a espécie Mansoa standleyi. A descrição da morfológica externa demonstrou caracteres peculiares à família Bignoniaceae e caracteres nunca observados na espécie em estudo. O que servirá como ferramenta macroscópica para diferenciações morfológicas e de táxons entre as demais espécies pertencentes ao gênero Mansoa, devido não apresentar estudos na literatura sobre a espécie em questão
Formation energy and interaction of point defects in two-dimensional colloidal crystals
The manipulation of individual colloidal particles using optical tweezers has
allowed vacancies to be created in two-dimensional (2d) colloidal crystals,
with unprecedented possibility of real-time monitoring the dynamics of such
defects (Nature {\bf 413}, 147 (2001)). In this Letter, we employ molecular
dynamics (MD) simulations to calculate the formation energy of single defects
and the binding energy between pairs of defects in a 2d colloidal crystal. In
the light of our results, experimental observations of vacancies could be
explained and then compared to simulation results for the interstitial defects.
We see a remarkable similarity between our results for a 2d colloidal crystal
and the 2d Wigner crystal (Phys. Rev. Lett. {\bf 86}, 492 (2001)). The results
show that the formation energy to create a single interstitial is
lower than that of the vacancy. Because the pair binding energies of the
defects are strongly attractive for short distances, the ground state should
correspond to bound pairs with the interstitial bound pairs being the most
probable.Comment: 5 pages, 2 figure
- …