54,875 research outputs found

    Testing the Hypothesis that the MJO is a Mixed Rossby-Gravity Wave Packet

    Get PDF
    The Madden Julian oscillation (MJO), also known as the intraseasonal oscillation (ISO), is a planetary-scale mode of variation in the tropical Indian and western Pacific Oceans. Basic questions about the MJO are why it propagates eastward at ~5 m s^(-1), why it lasts for intraseasonal time scales, and how it interacts with the fine structure that is embedded in it. This study will test the hypothesis that the MJO is not a wave but a wave packet-the interference pattern produced by a narrow frequency band of mixed Rossby gravity (MRG) waves. As such, the MJO would propagate with the MRG group velocity, which is eastward at ~5 m s^(-1) Simulation with a 3D model shows that MRG waves can be forced independently by relatively short-lived, eastward- and westward-moving disturbances, and the MRG wave packet can last long enough to form the intraseasonal variability. This hypothesis is consistent with the view that the MJO is episodic, with an irregular time interval between events rather than a periodic oscillation. The packet is defined as the horizontally smoothed variance of the MRG wave-the rectified MRG wave, which has features in common with the MJO. The two-dimensional Fourier analysis of the NOAA outgoing longwave radiation (OLR) dataset herein indicates that there is a statistically significant correlation between the MJO amplitude and wave packets of MRG waves but not equatorial Rossby waves or Kelvin waves, which are derived from the Matsuno shallow water theory. However, the biggest absolute value of the correlation coefficient is only 0.21, indicating that the wave packet hypothesis explains only a small fraction of the variance of the MJO in the OLR data

    Regularity Criteria for Navier-Stokes Equations with Slip Boundary Conditions on Non-flat Boundaries via Two Velocity Components

    Full text link
    H.-O. Bae and H.J. Choe, in a 1997 paper, established a regularity criteria for the incompressible Navier-Stokes equations in the whole space R3\R^3 based on two velocity components. Recently, one of the present authors extended this result to the half-space case R+3 .\R^3_+\,. Further, this author in collaboration with J. Bemelmans and J. Brand extended the result to cylindrical domains under physical slip boundary conditions. In this note we obtain a similar result in the case of smooth arbitrary boundaries, but under a distinct, apparently very similar, slip boundary condition. They coincide just on flat portions of the boundary. Otherwise, a reciprocal reduction between the two results looks not obvious, as shown in the last section below.Comment: 15 page
    • …
    corecore