356 research outputs found

    Electro-optic coupling of wide wavelength range in linear chirped-periodically poled lithium niobate and its applications

    Get PDF
    We theoretically investigate the electro-optic coupling in an optical superlattice of linear chirped-periodically poled lithium niobate. It is found that the electro-optic coupling in such optical superlattice can work in a wide wavelength range. Some of examples, with bandwidths of 20, 40, 80, 120nm, are demonstrated. The way to determine the electric field for perfect conversion between o- and e-ray and the method using apodized crystals of tanh profile to reduce the ripples are shown. As one of its applications, one kind of broadband Solc-type bandpass filter in optical communication range is proposed. (C) 2010 Optical Society of Americ

    Combining measurements and modeling/simulations analysis to assess carbon nanotube memory cell characteristics

    Get PDF
    A simulation package for CNT memory cells is developed, based on computational modeling of both the mesoscopic structure of carbon nanotube films and the electrical conductivity of inter-CNT contacts. The developed package enables the modeling of various electrical measurements and identification of a range of operation conditions delivering desirable device characteristics. This approach opens the path for optimization of the CNT fabric to meet performance requirements

    Synergistic Activation of Cardiac Genes by Myocardin and Tbx5

    Get PDF
    Myocardial differentiation is associated with the activation and expression of an array of cardiac specific genes. However, the transcriptional networks that control cardiac gene expression are not completely understood. Myocardin is a cardiac and smooth muscle-specific expressed transcriptional coactivator of Serum Response Factor (SRF) and is able to potently activate cardiac and smooth muscle gene expression during development. We hypothesize that myocardin discriminates between cardiac and smooth muscle specific genes by associating with distinct co-factors. Here, we show that myocardin directly interacts with Tbx5, a member of the T-box family of transcription factors involved in the Holt-Oram syndrome. Tbx5 synergizes with myocardin to activate expression of the cardiac specific genes atrial natriuretic factor (ANF) and alpha myosin heavy chain (α-MHC), but not that of smooth muscle specific genes SM22 or smooth muscle myosin heavy chain (SM-MHC). We found that this synergistic activation of shared target genes is dependent on the binding sites for Tbx5, T-box factor-Binding Elements (TBEs). Myocardin and Tbx5 physically interact and their interaction domains were mapped to the basic domain and the coil domain of myocardin and Tbx5, respectively. Our analysis demonstrates that the Tbx5G80R mutation, which leads to the Holt-Oram syndrome in humans, failed to synergize with myocardin to activate cardiac gene expression. These data uncover a key role for Tbx5 and myocardin in establishing the transcriptional foundation for cardiac gene activation and suggest that the interaction of myocardin and Tbx5 maybe involved in cardiac development and diseases

    Space-time variation of malaria incidence in Yunnan province, China

    Get PDF
    Abstract Background Understanding spatio-temporal variation in malaria incidence provides a basis for effective disease control planning and monitoring. Methods Monthly surveillance data between 1991 and 2006 for Plasmodium vivax and Plasmodium falciparum malaria across 128 counties were assembled for Yunnan, a province of China with one of the highest burdens of malaria. County-level Bayesian Poisson regression models of incidence were constructed, with effects for rainfall, maximum temperature and temporal trend. The model also allowed for spatial variation in county-level incidence and temporal trend, and dependence between incidence in June–September and the preceding January–February. Results Models revealed strong associations between malaria incidence and both rainfall and maximum temperature. There was a significant association between incidence in June–September and the preceding January–February. Raw standardised morbidity ratios showed a high incidence in some counties bordering Myanmar, Laos and Vietnam, and counties in the Red River valley. Clusters of counties in south-western and northern Yunnan were identified that had high incidence not explained by climate. The overall trend in incidence decreased, but there was significant variation between counties. Conclusion Dependence between incidence in summer and the preceding January–February suggests a role of intrinsic host-pathogen dynamics. Incidence during the summer peak might be predictable based on incidence in January–February, facilitating malaria control planning, scaled months in advance to the magnitude of the summer malaria burden. Heterogeneities in county-level temporal trends suggest that reductions in the burden of malaria have been unevenly distributed throughout the province

    High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae)

    Get PDF
    BACKGROUND: Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. METHODOLOGY/PRINCIPAL FINDINGS: Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. CONCLUSIONS/SIGNIFICANCE: The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly

    Effect of personal exposure to black carbon on changes in allergic asthma gene methylation measured 5 days later in urban children: importance of allergic sensitization

    Get PDF
    Background Asthma gene DNA methylation may underlie the effects of air pollution on airway inflammation. However, the temporality and individual susceptibility to environmental epigenetic regulation of asthma has not been fully elucidated. Our objective was to determine the timeline of black carbon (BC) exposure, measured by personal sampling, on DNA methylation of allergic asthma genes 5 days later to capture usual weather variations and differences related to changes in behavior and activities. We also sought to determine how methylation may vary by seroatopy and cockroach sensitization and by elevated fractional exhaled nitric oxide (FeNO). Methods Personal BC levels were measured during two 24-h periods over a 6-day sampling period in 163 New York City children (age 9–14 years), repeated 6 months later. During home visits, buccal cells were collected as noninvasive surrogates for lower airway epithelial cells and FeNO measured as an indicator of airway inflammation. CpG promoter loci of allergic asthma genes (e.g., interleukin 4 (IL4), interferon gamma (IFNγ), inducible nitric oxide synthase (NOS2A)), arginase 2 (ARG2)) were pyrosequenced at the start and end of each sampling period. Results Higher levels of BC were associated with lower methylation of IL4 promoter CpG−48 5 days later. The magnitude of association between BC exposure and demethylation of IL4 CpG−48 and NOS2A CpG+5099 measured 5 days later appeared to be greater among seroatopic children, especially those sensitized to cockroach allergens (RR [95% CI] 0.55 [0.37–0.82] and 0.67 [0.45–0.98] for IL4 CpG−48 and NOS2A CpG+5099, respectively), compared to non-sensitized children (RR [95% CI] 0.87 [0.65–1.17] and 0.95 [0.69–1.33] for IL4 CpG−48 and NOS2A CpG+5099, respectively); however, the difference was not statistically different. In multivariable linear regression models, lower DNA methylation of IL4 CpG−48 and NOS2A CpG+5099 were associated with increased FeNO. Conclusions Our results suggest that exposure to BC may exert asthma proinflammatory gene demethylation 5 days later that in turn may link to airway inflammation. Our results further suggest that seroatopic children, especially those sensitized to cockroach allergens, may be more susceptible to the effect of acute BC exposure on epigenetic changes

    Comparative analysis of novel and conventional Hsp90 inhibitors on HIF activity and angiogenic potential in clear cell renal cell carcinoma: implications for clinical evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perturbing Hsp90 chaperone function targets hypoxia inducible factor (HIF) function in a von Hippel-Lindau (VHL) independent manner, and represents an approach to combat the contribution of HIF to cell renal carcinoma (CCRCC) progression. However, clinical trials with the prototypic Hsp90 inhibitor 17-AAG have been unsuccessful in halting the progression of advanced CCRCC.</p> <p>Methods</p> <p>Here we evaluated a novel next generation small molecule Hsp90 inhibitor, EC154, against HIF isoforms and HIF-driven molecular and functional endpoints. The effects of EC154 were compared to those of the prototypic Hsp90 inhibitor 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589.</p> <p>Results</p> <p>The findings indicate that EC154 is a potent inhibitor of HIF, effective at doses 10-fold lower than 17-AAG. While EC154, 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589 impaired HIF transcriptional activity, CCRCC cell motility, and angiogenesis; these effects did not correlate with their ability to diminish HIF protein expression. Further, our results illustrate the complexity of HIF targeting, in that although these agents suppressed HIF transcripts with differential dynamics, these effects were not predictive of drug efficacy in other relevant assays.</p> <p>Conclusions</p> <p>We provide evidence for EC154 targeting of HIF in CCRCC and for LBH589 acting as a suppressor of both HIF-1 and HIF-2 activity. We also demonstrate that 17-AAG and EC154, but not LBH589, can restore endothelial barrier function, highlighting a potentially new clinical application for Hsp90 inhibitors. Finally, given the discordance between HIF activity and protein expression, we conclude that HIF expression is not a reliable surrogate for HIF activity. Taken together, our findings emphasize the need to incorporate an integrated approach in evaluating Hsp90 inhibitors within the context of HIF suppression.</p
    corecore