43 research outputs found

    A novel culture medium with reduced nutrient concentrations supports the development and viability of mouse embryos

    Get PDF
    Further refinement of culture media is needed to improve the quality of embryos generated in vitro. Previous results from our laboratory demonstrated that uptake of nutrients by the embryo is significantly less than what is supplied in traditional culture media. Our objective was to determine the impact of reduced nutrient concentrations in culture medium on mouse embryo development, metabolism, and quality as a possible platform for next generation medium formulation. Concentrations of carbohydrates, amino acids, and vitamins could be reduced by 50% with no detrimental effects, but blastocyst development was impaired at 25% of standard nutrient provision (reduced nutrient medium; RN). Addition of pyruvate and L-lactate (+PL) to RN at 50% of standard concentrations restored blastocyst development, hatching, and cell number. In addition, blastocysts produced in RN\u2009+PL contained more ICM cells and ATP than blastocysts cultured in our control (100% nutrient) medium; however, metabolic activity was altered. Similarly, embryos produced in the RN medium with elevated (50% control) concentrations of pyruvate and lactate in the first step medium and EAA and Glu in the second step medium were competent to implant and develop into fetuses at a similar rate as embryos produced in the control medium. This novel approach to culture medium formulation could help define the optimal nutrient requirements of embryos in culture and provide a means of shifting metabolic activity towards the utilization of specific metabolic pathways that may be beneficial for embryo viability

    Increased numbers of oligodendrocyte lineage cells in the optic nerves of cerebroside sulfotransferase knockout mice

    Get PDF
    Sulfatide is a myelin glycolipid that functions in the formation of paranodal axo-glial junctions in vivo and in the regulation of oligodendrocyte differentiation in vitro. Cerebroside sulfotransferase (CST) catalyzes the production of two sulfated glycolipids, sulfatide and proligodendroblast antigen, in oligodendrocyte lineage cells. Recent studies have demonstrated significant increases in oligodendrocytes from the myelination stage through adulthood in brain and spinal cord under CST-deficient conditions. However, whether these result from excess migration or in situ proliferation during development is undetermined. In the present study, CST-deficient optic nerves were used to examine migration and proliferation of oligodendrocyte precursor cells (OPCs) under sulfated glycolipid-deficient conditions. In adults, more NG2-positive OPCs and fully differentiated cells were observed. In developing optic nerves, the number of cells at the leading edge of migration was similar in CST-deficient and wild-type mice. However, BrdU+ proliferating OPCs were more abundant in CST-deficient mice. These results suggest that sulfated glycolipids may be involved in proliferation of OPCs in vivo

    Identification of genetic polymorphisms that predict responder/non-responder profiles to the RhD antigen

    No full text
    Background Regular plasma donors who produce high titre anti-D immunoglobulin (Ig) are overseen by the Australian Red Cross Blood Service RhD Program. New donors to the program are immunised with small amounts of RhD-positive RBCs, whilst donors who have developed anti-D due to previous RhD-incompatible blood transfusion or pregnancy are boosted with RhD-positive RBCs to maintain a high level of serum anti-D Ig. A significant proportion of primarily immunised individuals do not respond to RhD immunisation and are therefore unnecessarily exposed to the risks involved in RBC sensitisation. Study design and methods We genotyped 184 anti-D donors for āˆ¼9000 immunological and inflammatory genetic polymorphisms on an Affymetrix GeneChip, and validated the results with a High-Resolution Melt analysis assay. We built and validated a predictive logistic regression model using High Responder and Non-Responder anti-D donors that incorporated highly-associated polymorphisms and gender. Results High Responder and Non-Responder profiles in anti-D donors were significantly associated with a shortlist of 13 genetic polymorphisms and sex of the donor. The derivation of a logistic regression model showed an accuracy rate of 92.6% that was subsequently validated as 60.0% with an independent set of donor samples. Conclusion This study has developed a logistic regression model and a genotyping assay that can predict the responder profiles of anti-D donors and could potentially be applied to new donors and transfusion-dependent patients in a clinical setting. Additionally, target polymorphisms identified in immunological genes could help to elucidate the immunomodulatory pathways regulating the immune response to the RhD antigen, and to other RBC antigens

    Dispersed Network Manufacturing: An Emerging Form of Collaboration Networks

    No full text
    In this chapter we introduce a conceptual framework for a new form of production system, which is unique from many perspectives. The proposed framework, which we refer to as Dispersed Network Manufacturing (DNM), is based on the creation of a network of plants that are electronically linked so that the participating members focus on their specialized tasks, yet also share their manufacturing and production resources to create a loosely structured and flexible enterprise.Department of Industrial and Systems Engineerin
    corecore